首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A new nitroxide-based biradical having a long electron spin-lattice relaxation time (T(1e)) has been developed as an exogenous polarization source for DNP solid-state NMR experiments. The performance of this new biradical is demonstrated on hybrid silica-based mesostructured materials impregnated with 1,1,2,2-tetrachloroethane radical containing solutions, as well as in frozen bulk solutions, yielding DNP enhancement factors (ε) of over 100 at a magnetic field of 9.4 T and sample temperatures of ~100 K. The effects of radical concentration on the DNP enhancement factors and on the overall sensitivity enhancements (Σ(?)) are reported. The relatively high DNP efficiency of the biradical is attributed to an increased T(1e), which enables more effective saturation of the electron resonance. This new biradical is shown to outperform the polarizing agents used so far in DNP surface-enhanced NMR spectroscopy of materials, yielding a 113-fold increase in overall sensitivity for silicon-29 CPMAS spectra as compared to conventional NMR experiments at room temperature. This results in a reduction in experimental times by a factor >12,700, making the acquisition of (13)C and (15)N one- and two-dimensional NMR spectra at natural isotopic abundance rapid (hours). It has been used here to monitor a series of chemical reactions carried out on the surface functionalities of a hybrid organic-silica material.  相似文献   

2.
Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O−H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. Experiments performed on materials impregnated with pyridine also allow for the direct detection of intermolecular hydrogen bonding interactions through the lengthening of O−H bonds.  相似文献   

3.
High‐spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid‐state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd‐chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar‐coupled electron spins. Their well‐defined Gd⋅⋅⋅Gd distances in the range of 1.2–3.4 nm allowed us to elucidate the Gd⋅⋅⋅Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd⋅⋅⋅Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for 1H, 13C, and 15N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high‐spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high‐spin PAs for specific applications of DNP.  相似文献   

4.
In this review, some of the latest research developments on the characterization of the structure and properties of oxide materials by applying solid-state nuclear magnetic resonance spectroscopy (NMR), including the use of dynamic nuclear polarization (DNP) NMR, 17O NMR combined with surface selective labeling and 31P NMR coupled with phosphorous-containing probe molecules, are discussed.  相似文献   

5.
The surface of γ-alumina nanoparticles can be characterized by dynamic nuclear polarization (DNP) surface-enhanced NMR of (27)Al. DNP is combined with cross-polarization and MQ-MAS to determine local symmetries of (27)Al sites at the surface.  相似文献   

6.
The 29Si NMR spectra of six silanols and four silylamines were examined in several solvents of varying electron pair donor ability. A linear correlation was found between the silanol silicon-29 chemical shift and solvent donor ability. The silylamines were considerably less sensitive to solvent. The effect is attributed to hydrogen bonding between the hydroxyl proton of the silanol and an electron pair of the solvent.  相似文献   

7.
Hyperpolarization of NMR‐active nuclei is key to gather high quality spectra of rare species and insensitive isotopes. We have recently established that silica‐based materials containing regularly distributed nitroxyl radicals connected to the silica matrix by flexible linkers can serve as promising polarization matrices for dynamic nuclear polarization (DNP). Here we investigate the influence of the linker on the efficiency of the polarization. The materials were fully characterized and exhibit high surface areas and narrow pore size distributions with a tunable amount of phenyl azide groups over a broad range of concentrations. The phenyl azide groups can be easily functionalized via a two‐step procedure with 4‐carboxy‐2,2,6,6‐tetramethyl‐1‐oxylpiperidine (TEMPO) to give polarizing matrices with controllable radical content. The DNP efficiency was found to be similar as in materials with flexible linkers, both for magic angle spinning at 105 K and dissolution DNP at 4 K.  相似文献   

8.
Recent studies have shown that dynamic nuclear polarization (DNP) can be used to detect 17O solid-state NMR spectra of naturally abundant samples within a reasonable experimental time. Observations using indirect DNP, which relies on 1H mediation in transferring electron hyperpolarization to 17O, are currently limited mostly to hydroxyls. Direct DNP schemes can hyperpolarize non-protonated oxygen near the radicals; however, they generally offer much lower signal enhancements. In this study, we demonstrate the detection of signals from non-protonated 17O in materials containing silicon. The sensitivity boost that made the experiment possible originates from three sources: indirect DNP excitation of 29Si via protons, indirect detection of 17O through 29Si nuclei using two-dimensional 29Si{17O} D-HMQC, and Carr-Purcell-Meiboom-Gill refocusing of 29Si magnetization during acquisition. This 29Si-detected scheme enabled, for the first time, 2D 17O−29Si heteronuclear correlation spectroscopy in mesoporous silica and silica-alumina surfaces at natural abundance. In contrast to the silanols showing motion-averaged 17O signals, the framework oxygens exhibit unperturbed powder patterns as unambiguous fingerprints of surface sites. Along with hydroxyl oxygens, detection of these moieties will help in gaining more atomistic-scale insights into surface chemistry.  相似文献   

9.
Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.  相似文献   

10.
The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH approximately 13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10(-3), 10(-4), and 10(-5) molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10(-5) m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10(-3) m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative nature of the 27Al NMR data shows that cancrinite growth increases while sodalite reaches a steady state with respect to total aluminum in the solid phases. The data also relate the coupling of Cs sorption to the ripening of feldspathoid phases in this heterogeneous system as a function of time, and illustrate the important influence of co-contaminants on the environmental reaction kinetics studied here.  相似文献   

11.
The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2.  相似文献   

12.
The synthesis procedure for controlled-structure benzoxazine model oligomers is described. To understand the complex hydrogen bonding structure, a series of benzoxazine model oligomers is characterized by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR). The NMR resonances for model oligomers are newly assigned. The FT-IR spectra for model benzoxazine oligomers are carefully investigated both in crystalline and solution states. The distribution of hydrogen bonding species in benzoxazine model oligomers is quantitatively analyzed using FT-IR spectra. The cyclic conformations for the oligomers are also proposed.  相似文献   

13.
Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) (13)C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the (13)C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the (13)C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving (35,37)Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the (35,37)Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the (13)C Larmor frequency further facilitates the polarization of the (13)C nuclei by spin diffusion. Calculation of the (13)C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.  相似文献   

14.
Methods enabling structural studies of membrane-integrated receptor systems without the necessity of purification provide an attractive perspective in membrane protein structural and molecular biology. This has become feasible in principle since the advent of dynamic nuclear polarization (DNP) magic-angle-spinning NMR spectroscopy, which delivers the required sensitivity. In this pilot study, we observed well-resolved solid-state NMR spectra of extensively (13)C-labeled neurotoxin II bound to the nicotinic acetylcholine receptor (nAChR) in native membranes. We show that TOTAPOL, a biradical required for DNP, is localized at membrane and protein surfaces. The concentration of active, membrane-attached biradical decreases with time, probably because of reactive components of the membrane preparation. An optimal distribution of active biradical has strong effects on the NMR data. The presence of inactive TOTAPOL in membrane-proximal situations but active biradical in the surrounding water/glycerol "glass" leads to well-resolved spectra, yet a considerable enhancement (ε = 12) is observed. The resulting spectra of a protein ligand bound to its receptor are paving the way for further DNP investigations of proteins embedded in native membrane patches.  相似文献   

15.
Dynamic nuclear polarization (DNP) has become a very important hyperpolarization method because it can dramatically increase the sensitivity of nuclear magnetic resonance (NMR) of various molecules. Liquid-state DNP based on Overhauser effect is capable of directly enhancing polarization of all kinds of nuclei in the system. The combination of simultaneous Overhauser multi-nuclei enhancements with the multi-nuclei parallel acquisitions provides a variety of important applications in both MR spectroscopy (MRS) and image (MRI). Here we present two simple illustrative examples for simultaneously enhanced multi-nuclear spectra and images to demonstrate the principle and superiority. We have observed very large simultaneous DNP enhancements for different nuclei, such as 1H and 23Na, 1H and 31P, 19F and 31P, especially for the first time to report sodium ion enhancement in liquid. We have also obtained the simultaneous images of 19H and 31P, 19F and 31P at low field by solution-state DNP for the first time.  相似文献   

16.
The first use of silicon-29 diffusion-ordered NMR spectroscopy (DOSY) is reported, in a study of the speciation of aqueous silicates.  相似文献   

17.
BlackglasTM polysiloxane systems produce silicon oxycarbide glasses by pyrolysis in inert atmosphere. The silicon oxycarbides evidence oxidative degradation that limits their lifetime as composite matrices. The present study characterizes bonding rearrangements in the oxycarbide network accompanying increases in pyrolysis temperature. It also addresses the changes in susceptibility to oxidation due to variations in the distribution of Si bonded species obtained under different processing conditions. The study is carried out using 29Si nuclear magnetic resonance (NMR) spectroscopy and a design of experiments approach to model the oxidation behavior. The NMR results are compared with those obtained by thermogravimetric analysis (TGA). Samples pyrolyzed under inert conditions are compared to those pyrolyzed in reactive ammonia environments.  相似文献   

18.
Estuaries are key ecosystems with unique biodiversity and are of high economic importance. Along the estuaries, variations in environmental parameters, such as salinity and light penetration, can modify the characteristics of dissolved organic matter (DOM). Nevertheless, there is still limited information about the atomic-level transformations of DOM in this ecosystem. Solid-state NMR spectroscopy provides unique insights into the nature of functional groups in DOM. A major limitation of this technique is its lack of sensivity, which results in experimental time of tens of hours for the acquisition of 13C NMR spectra and generally precludes the observation of 15N nuclei for DOM. We show here how the sensitivity of solid-state NMR experiments on DOM of Seine estuary can be enhanced using dynamic nuclear polarization (DNP) under magic-angle spinning. This technique allows the acquisition of 13C NMR spectra of these samples in few minutes, instead of hours for conventional solid-state NMR. Both conventional and DNP-enhanced 13C NMR spectra indicate that the 13C local environments in DOM are not strongly modified along the Seine estuary. Furthermore, the sensitivity gain provided by the DNP allows the detection of 15N NMR signal of DOM, in spite of the low nitrogen content. These spectra reveal that the majority of nitrogen is in the amide form in these DOM samples and show an increased disorder around these amide groups near the mouth of the Seine.  相似文献   

19.
While dynamic nuclear polarization (DNP) under magic‐angle spinning (MAS) is generally a powerful method capable of greatly enhancing the sensitivity of solid‐state NMR spectroscopy, hyperpolarization also gives rise to peculiar spin dynamics. Here, we elucidate how specific cross‐relaxation enhancement by active motions under DNP (SCREAM‐DNP) can be utilized to selectively obtain MAS‐NMR spectra of an RNA aptamer in a tightly bound complex with a methyl‐bearing ligand (tetracycline) due to the effective CH3‐reorientation at an optimized sample temperature of approximately 160 K. SCREAM‐DNP can spectrally isolate the complex from non‐bound species in an RNA mixture. This selectivity allows for a competition assay between the aptamer and a mutant with compromised binding affinity. Variations in molecular structure and methyl dynamics, as observed by SCREAM‐DNP, between free tetracycline and RNA‐bound tetracycline are discussed.  相似文献   

20.
The sensitivity of solid-state NMR experiments can be enhanced with dynamic nuclear polarization (DNP), a technique that transfers the high Boltzmann polarization of unpaired electrons to nuclei. Signal enhancements of up to 23 have been obtained for magic angle spinning (MAS) experiments at 5 T and 85-90 K using a custom-designed high-power gyrotron. The extended stability of MAS/DNP experiments at low temperature is demonstrated with (1)H-driven (13)C spin-diffusion experiments on the amino acid proline. These (13)C-(13)C chemical shift correlation spectra are the first two-dimensional MAS/DNP experiments performed at high field (>1.4 T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号