首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Effects of various operating parameters of 400 W pulsed Nd:YAG laser on welding of nickel-alloyed copper have been investigated. The induced plume spectra in case of using different assist gases and preheat temperatures have been analyzed and the effects of these key factors on melt features such as penetration depth, porosity and spattering have been attributed to the spectroscopic behavior of the plume. Moreover, the CuI electron temperature and its standard deviation as the spectroscopic responses of the plasma plume to various laser process parameters have been quantitatively evaluated at different average and peak powers and pulse energies. Also, the mentioned responses were utilized to justify the weld bead profile features, involving weld depth, width and their stabilities, at similar process parameters. The operating conditions of welding were optimized, regarding the results of spectroscopic observations and attributing them to the qualitative aspects of the melt pool.  相似文献   

3.
A stable, single-longitudinal-mode, nanosecond-pulsed Nd:YAG laser with a laser-diode dual-end pumping arrangement is constructed. Injection seeding is performed successfully by utilizing a Rb Ti OPO4 crystal as the intracavity phase modulator to change the optical length of the slave cavity based on the delay-ramp-fire technique. The laser generates 9.9 m J of pulse energy with a 16 ns pulse duration at a 400 Hz repetition rate.A near-diffraction-limit laser beam is achieved with a beam quality factor M2 of approximately 1.2. The frequency jitter is 1.5 MHz over 2 min, and the fluctuation of the output pulse power is 0.3% over 23 min.  相似文献   

4.
UV laser (=355 nm) ablation of piezoelectric lead zirconate titanate (PZT) ceramics in air has been investigated under different laser parameters. It has been found that there is a critical pulse number (N=750). When the pulse number is smaller than the critical value, the ablation rate decreases with increasing pulse number. Beyond the critical value, the ablation rate becomes constant. The ablation rate and concentrations of O, Zr and Ti on the ablated surface increase with the laser fluence, while the Pb concentration decreases due to the selective evaporation of PbO. The loss of the Pb results in the formation of a metastable pyrochlore phase. ZrO2 was detected by XPS in the ablated zone. Also, the concentrations of the pyrochlore phase and ZrO2 increase with increasing laser fluence. These results clearly indicate that the chemical composition and phase structure in the ablated zone strongly depend on the laser fluence. The piezoelectric properties of the cut PZT ceramic samples completely disappear due to the loss of the Pb and the existence of the pyrochlore phase. After these samples were annealed at 1150 °C for 1 h in a PbO-controlled atmosphere, their phase structure and piezoelectric properties were recovered again. Finally, 1–3 and concentric-ring 2–2 PZT/epoxy composites were fabricated by UV laser micromachining and their thickness modes were measured by impedance spectrum analysis and a d33 meter. Both composites show high piezoelectric properties. PACS 81.40.Gh; 77.84.-s  相似文献   

5.
This study presents a new model for analyzing the temperature distribution and weld pool shape in Nd:YAG pulsed laser welding. In the proposed approach, a surface flux heat transfer model is applied in the low laser energy intensity region of the weld, while a keyhole heat transfer model based on a volumetric heat source is applied in the high laser energy intensity region of the weld. The correlation between the intensity of the laser input energy and the geometric parameters of the volumetric heat source is derived experimentally. A series of MARC finite element simulations based on the proposed single pulse model are performed to investigate the shape and size of the weld pool given different laser energy intensities. A good agreement is observed between the simulation results and the experimental results obtained under equivalent single pulse welding conditions. Thus, the basic validity of the proposed model is confirmed.  相似文献   

6.
The quality of the beam produced by a Nd:YAG laser was investigated. A hemispherical Nd:YAG laser resonator was developed. A flashlamp driver was designed to pump a Nd:YAG laser crystal. The output of the laser was characterized via the variation of the capacitor voltage. A phosphor card was used to detect the invisible of the infrared beam. Exposed photographic paper was utilized to examine the energetic beam after interaction. The brightness and strength of the beams were analyzed using the Matrox Inspector and VideoTest 5 software packages. The intensity of the beam produced and the volume loss after interaction were found to linearly increase with respect to the input energy.  相似文献   

7.
Many laser processes, such as welding or surface treatments are associated with an undesired phenomenon, which is oxidation. The solution commonly employed to solve this problem approaches the shielding gas and/or the shielding gas device. What we propose in this paper is a methodology with the goal to optimize the protection gas device design as well as the gas flow in the case of laser welding and surface treatments. The pressure created by the gas flow on the sample surface is recorded and analysed together with the operating parameters influence in order to reach the objectives. The nozzle system designed and presented below assures the protection against material oxidation using minimal gas flow rates and increases the welding penetration in the case of high-power Nd:YAG laser welding.  相似文献   

8.
An in-process vibration-assisted laser cladding method was designed for improving the shrinkage cavities of pulsed Nd:YAG laser ceramic–metal composite cladding on Al-alloys. The substrate was vibrated during the cladding process. A signal generator in this study externally modulated the frequency, amplitude, and wave shape of the vibration. An acceleration sensing device was used to monitor the vibration condition to ensure the modulation was correct. The feasibility of using the in-process vibration-assisted method for improving the shrinkage cavities of pulsed Nd:YAG laser SiC+Al–Si cladding on an Al-alloy was then experimentally evaluated. The experimental results show that the in-process vibration-assisted method significantly improves the degree of cavity shrinkage when the penetration depth is not very great. Analysis of the data shows that with vibration-assisted cladding, the depth of penetration increases with frequencies between 200 and 1500 Hz. The results were especially significant for 800 mV modulation vibration.  相似文献   

9.
Hollow-fiber delivery of high-power pulsed Nd:YAG laser light   总被引:1,自引:0,他引:1  
Matsuura Y  Hanamoto K  Sato S  Miyagi M 《Optics letters》1998,23(23):1858-1860
We propose hollow fibers for delivery of high-peak-power pulsed Nd:YAG laser light. Hollow fibers with an internal polymer layer were fabricated by a liquid-phase coating technique. We reduced the losses of the fibers in the near-infrared region by producing a silver film that was very smooth owing to use of an ultrasonic wave for mixing of the silver and the reducer solutions in the silver-plating process. The straight losses of the 1-m-long polymer-coated fibers were 0.3 dB for the 700-mum bore size and 0.1 dB for the 1000-mum bore fiber.  相似文献   

10.
 以实现高功率、高光束质量的脉冲激光输出为目的,对非对称平-凹谐振腔的结构进行了理论分析。设计出了高功率、高光束质量非对称放置的平-凹谐振腔、双氙灯泵浦的脉冲Nd: YAG激光器。当占空比为9%时,实现输出激光平均功率近480 W,光束参数积优于12.7 mm·mrad,电光转化效率近4%,与理论分析吻合,可用芯径300 μm的光纤传输,不稳定性优于±1%。加工实验证明有较好的质量:切割材料为不锈钢,厚度为3 mm时、切割速度为0.6 m/min和厚度为1.5 mm、切割速度为1.2 m/min时,两种情况下所得切缝宽度均为250 μm,且切割上下沿光滑。  相似文献   

11.
A new method for improving the efficiency of laser drilling has been developed. Two synchronized free-running laser pulses from a tandem-head Nd:YAG laser are capable of drilling through 1/8-in-thick stainless-steel targets at a stand-off distance of 1 m without gas-assist. The combination of a high-energy laser pulse for melting with a properly tailored high-intensity laser pulse for liquid expulsion results in the efficient drilling of metal targets. We argue that the improvement in drilling is due to the recoil pressure generated by rapid evaporation of the molten material by the second laser pulse. Received: 29 August 2000 / Accepted: 18 December 2000 / Published online: 3 April 2001  相似文献   

12.
Laser microdrilling is becoming an important tool in a wide spectrum of industrial applications due to the possibility to produce microholes in almost any type of materials. The purpose of this study was to create a simple and efficient optical apparatus that could produce microdrillings by either percussion or trepanning methods. The developed system is composed by a nanosecond Nd:YAG laser operating at 532 nm and one convergent lens with off-center optical axis of 1′. For the trepanning method the lens spins in its geometrical center at constant angular speed of 350 rpm. Typical microholes diameters obtained in metallic aluminum were in the range of 22 to 95 μm and 70 to 150 μm for the percussion and trepanning methods, respectively. Typical drilling velocities were in the order of 10 μm/s for applied fluences ranging from 22 to 150 J/cm2 for both methods. The values of the ratio between input and output diameters were 0.30 and 0.25 for microholes obtained by percussion and trepanning methods, respectively. The best microholes morphology was obtained using the trepanning method. The results for both methods are discussed based on the optical and thermal properties of the material processed and the constructed apparatus.  相似文献   

13.
We report the deposition of thin films of silver (Ag) nanoparticles by pulsed laser ablation in vacuum using the third line (355 nm) of a YAG:Nd laser. The nanostructure and/or morphology of the films was investigated as a function of the number of ablation pulses, by means of transmission electron microscopy and atomic force microscopy. Our results show that films deposited with a small number of ablation pulses (500 or less), are not continuous, but formed of isolated nearly spherical Ag nanoparticles with diameters in the range from 1 nm to 8 nm. The effect of increasing the number of pulses by one order of magnitude (5000) is to increase the mean diameter of the globular nanoparticles and also the Ag areal density. Further increase of the number of pulses, up to 10,000, produces the formation of larger and anisotropic nanoparticles, and for 15,000 pulses, quasi-percolated Ag films are obtained. The presence of Ag nanoparticles in the films was also evidenced from the appearance of a strong optical absorption band associated with surface plasmon resonance. This band was widened and its peak shifted from 425 nm to 700 nm as the number of laser pulses was increased from 500 to 15,000.  相似文献   

14.
吕振国  李庆行 《光学学报》1992,12(11):98-1003
报道用倍频晶体KTP实现Nd:YAG激光锁模的系统研究,给出了该锁模激光器输出脉宽的表达式,并和实验测量值相比较,计算值跟实验结果符合较好.文中还分析了各种参数对该锁模激光输出性能的影响.  相似文献   

15.
Alumina ceramics have found wide range of applications from semiconductors, communication technologies, medical devices, automotive to aerospace industries. Processing of alumina ceramics is rather difficult due to its high degree of brittleness, hardness, low thermal diffusivity and conductivity. Rapid improvements in laser technologies in recent years make the laser among the most convenient processing tools for difficult-to-machine materials such as hardened metals, ceramics and composites. This is particularly evident as lasers have become an inexpensive and controllable alternative to conventional hole drilling methods. This paper reports theoretical and experimental results of drilling the alumina ceramic with thicknesses of 5 mm and 10.5 mm using milisecond pulsed Nd:YAG laser. Effects of the laser peak power, pulse duration, repetition rate and focal plane position have been determined using optical and Scanning Electron Microscopy (SEM) images taken from cross-sections of the drilled alumina ceramic samples. In addition to dimensional analysis of the samples, microstructural investigations have also been examined. It has been observed that, the depth of the crater can be controlled as a function of the peak power and the pulse duration for a single laser pulse application without any defect. Crater depth can be increased by increasing the number of laser pulses with some defects. In addition to experimental work, conditions have been simulated using ANYS FLUENT package providing results, which are in good agreement with the experimental results.  相似文献   

16.
In the present research, Nd:YAG laser micro-drilling of gamma-titanium aluminide, a new material which has performed well in laboratory tests as well as in different fields of engineering, is studied. The effect of different process parameters in the optimization of the process is investigated. The aspects considered are the hole circularity at exit and the hole taper of the drilled hole. Lamp current, pulse frequency, air pressure and thickness of the job are selected as independent process variables. The central composite design (CCD) technique based on response surface methodology (RSM) is employed to plan the experiments to achieve optimum responses with a reduced number of experiments.  相似文献   

17.
Synthesis of titania (TiO2) nanoparticles (NPs) has been performed with pulsed laser ablation (PLA) approach by irradiating a 1064 nm Nd:YAG laser pulses on the titanium target immersed in pure water. A systematic characterization on the products, synthesized in different laser pulse energies, illustrated the conspicuous dependence of crystalline phase and size distribution of the NPs on this parameter. Emission spectroscopy of the induced plasma was exploited to justify the formation of titania NPs through the synthesis process, as well as the emergence of rutile phase beside the anatase by increasing the laser pulse energies. In addition, UV-vis optical absorption and Raman spectroscopy, associated with X-ray diffraction (XRD) were employed to quantitatively determine the crystalline phases of the products. Morphological observations by means of transmission electron microscopy (TEM), demonstrating the spherical shape of the synthesized NPs, was utilized to investigate the variation of particle size distribution with the laser pulse energy.  相似文献   

18.
A Nd:YAG laser is environmentally safe and economical with no poisonous or hazardous gases and no expensive gases. We prepared Y123 films by using the fourth harmonic Nd:YAG pulsed laser deposition (PLD) method and optimized the deposition conditions on MgO single crystalline substrates and IBAD-MgO substrates for Y123 coated conductor. We found that the optimal deposition conditions acquired bi-axially aligned Y123 films on both substrates with Tc ∼ 90 K and Jc > 1 MA/cm2 at 77 K in self-field. For obtaining high Ic, we fabricated thick Y123 films on both substrates and the maximum Ic per 1 cm in width reached 186 A/cm-width on the IBAD-MgO substrate. Interestingly, there were no a-axis oriented grains within the films up to 1.8 μm thick. This might be an especial feature of the Nd:YAG-PLD method. We believe that the Nd:YAG-PLD method is promising method for RE123 coated conductor production.  相似文献   

19.
脉冲Nd:YAG激光熔覆修复塑料模具工艺参数的优化   总被引:1,自引:3,他引:1       下载免费PDF全文
 激光器的电压、电流、脉冲宽度、脉冲频率与激光的扫描速度、光斑直径等工艺参数直接影响着脉冲Nd:YAG激光熔覆质量。为了简化工艺调整过程,提出了重叠率的概念,并进行了理论推导,建立了重叠率与脉冲频率、激光扫描速度、激光光斑直径相互关系的方程式。利用预置法在低碳钢基体上熔覆Ni基合金粉末,获得了2组最佳工艺参数,即单脉冲能量、重叠率分别为6.7 J,97.4%和21 J,69.4%。研究表明:在单脉冲能量和重叠率一定的条件下,改变电流、脉宽、脉冲频率及熔覆速度不会影响熔覆质量。  相似文献   

20.
The use of an Nd:YAG laser for thin plate magnesium alloy butt welding was optimized using the Taguchi analytical methodology. The welding parameters governing the laser beam in thin plate butt welding were evaluated by measuring of the ultimate tension stress. The effectiveness of the Taguchi method lies in clarifying the factor that dominates complex interactions in laser welding. The factors can be the shielding gas, laser energy, convey speed of workpiece, point at which the laser is focused, pulse frequency, and pulse shape. Furthermore, 18 combinations of these six essential welding parameters were set and Taguchi's method followed exactly. The optimal result was confirmed with a superior ultimate tension stress of 169 MPa, 2.5 times larger to that from original set for laser welding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号