首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.  相似文献   

2.
Matrix‐assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) allows for the simultaneous detection and imaging of several molecules in brain tissue. However, the detection of glycerolipids such as diacylglycerol (DAG) and triacylglycerol (TAG) in brain tissues is hindered in MALDI‐IMS because of the ion suppression effect from excessive ion yields of phosphatidylcholine (PC). In this study, we describe an approach that employs a homogeneously deposited metal nanoparticle layer (or film) for the detection of glycerolipids in rat brain tissue sections using IMS. Surface‐assisted laser desorption/ionisation IMS with sputter‐deposited Pt film (Pt‐SALDI‐IMS) for lipid analysis was performed as a solvent‐free and organic matrix‐free method. Pt‐SALDI produced a homogenous layer of nanoparticles over the surface of the rat brain tissue section. Highly selective detection of lipids was possible by MALDI‐IMS and Pt‐SALDI‐IMS; MALDI‐IMS detected the dominant ion peak of PC in the tissue section, and there were no ion peaks representing glycerolipids such as DAG and TAG. In contrast, Pt‐SALDI‐IMS allowed the detection of these glycerolipids, but not PC. Therefore, using a hybrid method combining MALDI and Pt‐SALDI (i.e., matrix‐enhanced [ME]‐Pt‐SALDI‐IMS), we achieved the simultaneous detection of PC, PE and DAG in rat brain tissue sections, and the sensitivity for the detection of these molecules was better than that of MALDI‐IMS or Pt‐SALDI alone. The present simple ME‐Pt‐SALDI approach for the simultaneous detection of PC and DAG using two matrices (sputter‐deposited Pt film and DHB matrix) would be useful in imaging analyses of biological tissue sections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI/IMS) is a useful tool for measuring drug distributions. To obtain reproducible analytical results with MALDI/IMS, it is essential to apply a homogeneous matrix coating onto sample surfaces. A simple and inexpensive automatic matrix spraying system (AMSS) with good reproducibility was developed in this study. In addition, drug distributions in organs were measured by MALDI/IMS using the AMSS for forensic toxicology applications. The AMSS was constructed from simple components, including an air brush, a turntable, and a microscope. Organ slices placed onto conductive sheets were attached to the turntable. The trigger of the air brush was held with a clamp to ensure that it sprayed continuously onto a defined area of the table. Periodic spraying of the matrix solution and evaporation of solvent were performed by rotating the turntable. The droplets and crystals on the sample surfaces were observed under a microscope attached to the turntable. The droplet size, rotation rate of the turntable, and the formulation of the matrix solution were optimized. The homogeneity of the matrix coating was evaluated using the coefficients of variation (CV) obtained by quantifying the color density of the sheet surface. The AMSS enabled more homogeneous matrix coating (intersheet CV?=?5.4?%) than manual spraying (intersheet CV?=?16.7?%) when 10?mL of 0.5?% aqueous trifluoroacetic acid/acetonitrile (1:3, v/v) containing 10?mg/mL α-cyano-4-hydroxycinnamic acid were sprayed as droplets less than 50?μm in diameter onto a turntable rotating at 30?rpm. The distributions of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites in the brain, liver, and kidney of a mouse that died from an MDMA overdose (58?mg/kg?i.p.) were visualized by MALDI/IMS using the AMSS. The ion intensities of MDMA obtained from the same regions on three sequential kidney slices showed acceptable variations (CV?=?2.9-8.8?% for five different regions), implying repeatable measurements with MALDI/IMS using the AMSS. It was revealed that MDMA was particularly concentrated around the brain stem and the major calix of the kidney. The AMSS would be suitable for preparing samples for measuring the distributions of drugs in organs at toxic dose levels in forensic toxicological applications.  相似文献   

4.
Matrix-assisted laser desorption ionization/ionization imaging mass spectrometry (MALDI IMS) with a time-of-flight analyzer was used to characterize the distribution of lipid molecular species in the brain of rats in two injury models. Ischemia/reperfusion injury of the rat brain after bilateral occlusion of the carotid artery altered appearance of the phospholipids present in the hippocampal region, specifically the CA1 region. These brain regions also had a large increase in the ion abundance at m/z 548.5 and collisional activation supported identification of this ion as arising from ceramide (d18:1/18:0), a lipid known to be associated with cellular apoptosis. Traumatic brain injury model in the rat was examined by MALDI IMS and the area of damage also showed an increase in ceramide (d18:1/18:0) and a remarkable loss of signal for the potassium adduct of the most abundant phosphocholine molecular species 16:0/18:1 (PC) with a corresponding increase in the sodium adduct ion. This change in PC alkali attachment ion was suggested to be a result of edema and influx of extracellular fluid likely through a loss of Na/K-ATPase caused by the injury. These studies reveal the value of MALDI IMS to examine tissues for changes in lipid biochemistry and will provide data needed to eventually understand the biochemical mechanisms relevant to tissue injury.  相似文献   

5.
The need of cellular and sub‐cellular spatial resolution in laser desorption ionization (LDI)/matrix‐assisted LDI (MALDI) imaging mass spectrometry (IMS) necessitates micron and sub‐micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end, we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical/ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub‐cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub‐micron spatial resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The combination of microscope mode matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with protein identification methodology: the molecular scanner, was explored. The molecular scanner approach provides improvement of sensitivity of detection and identification of high-mass proteins in microscope mode IMS. The methodology was tested on protein distributions obtained after separation by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). High-quality, high-spatial-resolution ion images were recorded on a TRIFT-II ion microscope after gold coating of the MALDI sample preparation on the poly(vinylidenedifluoride) capture membranes. The sensitivity of the combined method is estimated to be 5 pmol. The minimum amount of sample consumed, needed for identification, was estimated to be better than 100 fmol. Software tools were developed to analyze the spectral data and to generate broad mass range and single molecular component microscope mode ion images and single mass-to-charge ratio microprobe mode images.  相似文献   

7.
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has been used to determine peptide distributions directly from rat, mouse and human pituitary tissue sections. Since these organs are small (102–103 μm) the spatial resolution of IMS is a key issue in molecular imaging of pituitary tissue sections. Here we show that high-resolution IMS allows localization of neuropeptide distributions within different cell clusters of a single organ of a pituitary tissue section. The sample preparation protocol does not result in analyte redistribution and is therefore applicable to IMS experiments at cellular length scales. The stigmatic imaging mass spectrometer used in this study produces selected-ion-count images with pixel sizes of 500 nm and a resolving power of 4 μm, yielding superior spatial detail compared to images obtained in microprobe imaging experiments. Furthermore, we show that with imaging mass spectrometry a distinction can be made between different mammalian tissue sections based on differences in the amino acid sequence of neuropeptides with the same function. This example demonstrates the power of IMS for label-free molecular imaging at relevant biological length scales.  相似文献   

8.
Matrix-Assisted Laser Desorption/Ionization (MALDI) Imaging Mass Spectrometry (IMS) is a molecular technology that allows simultaneous investigation of the content and spatial distribution of molecules within tissue. In this work, we examine different classes of detergents, the anionic sodium dodecyl sulfate (SDS), the nonionic detergents Triton X-100, Tween 20 and Tween 80, and the zwitterionic 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) for use in MALDI IMS of analytes above m/z 4000. These detergents were found to be compatible with MALDI MS and did not cause signal suppression relative to non-detergent applications and did not produce interfering background signals. In general, these detergents enhanced signal acquisition within the mass range m/z 4-40 000. Adding detergents into the matrix was comparable with the separate application of detergent and matrix. Evaluation of spectra collected from organ-specific regions of a whole mouse pup section showed that different detergents perform optimally with different organs, indicating that detergent selection should be optimized on the specific tissue for maximum gain. These data show the utility of detergents towards enhancement of protein signals for on-tissue MALDI IMS analysis.  相似文献   

9.
The specific matrix used in matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT‐ICR) IMS of murine liver tissue when using 9‐aminoacridine (9AA), 5‐chloro‐2‐mercaptobenzothiazole (CMBT), 1,5‐diaminonaphthalene (DAN), 2,5‐Dihydroxyacetophenone (DHA), and 2,5‐dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.  相似文献   

10.
A novel method for on-tissue identification of proteins in spatially discrete regions is described using tryptic digestion followed by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with MS/MS analysis. IMS is first used to reveal the protein and peptide spatial distribution in a tissue section and then a serial section is robotically spotted with small volumes of trypsin solution to carry out in situ protease digestion. After hydrolysis, 2,5-Dihydroxybenzoic acid (DHB) matrix solution is applied to the digested spots, with subsequent analysis by IMS to reveal the spatial distribution of the various tryptic fragments. Sequence determination of the tryptic fragments is performed using on-tissue MALDI MS/MS analysis directly from the individual digest spots. This protocol enables protein identification directly from tissue while preserving the spatial integrity of the tissue sample. The procedure is demonstrated with the identification of several proteins in the coronal sections of a rat brain.  相似文献   

11.

Rationale

Mass spectrometry imaging (MSI) is a powerful tool for mapping the surface of a sample. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) and atmospheric pressure matrix‐assisted laser desorption/ionization (AP‐MALDI) offer complementary capabilities. Here, we present a workflow to apply both techniques to a single tissue section and combine the resulting data for the example of human colon cancer tissue.

Methods

Following cryo‐sectioning, images were acquired using the high spatial resolution (1 μm pixel size) provided by TOF‐SIMS. The same section was then coated with a para‐nitroaniline matrix and images were acquired using AP‐MALDI coupled to an Orbitrap mass spectrometer, offering high mass resolution, high mass accuracy and tandem mass spectrometry (MS/MS) capabilities. Datasets provided by both mass spectrometers were converted into the open and vendor‐independent imzML file format and processed with the open‐source software MSiReader.

Results

The TOF‐SIMS and AP‐MALDI mass spectra show strong signals of fatty acids, cholesterol, phosphatidylcholine and sphingomyelin. We showed a high correlation between the fatty acid ions detected with TOF‐SIMS in negative ion mode and the phosphatidylcholine ions detected with AP‐MALDI in positive ion mode using a similar setting for visualization. Histological staining on the same section allowed the identification of the anatomical structures and their correlation with the ion images.

Conclusions

This multimodal approach using two MSI platforms shows an excellent complementarity for the localization and identification of lipids. The spatial resolution of both systems is at or close to cellular dimensions, and thus spatial correlation can only be obtained if the same tissue section is analyzed sequentially. Data processing based on imzML allows a real correlation of the imaging datasets provided by these two technologies and opens the way for a more complete molecular view of the anatomical structures of biological tissues.
  相似文献   

12.
Lens crystallin proteins make up 90% of expressed proteins in the ocular lens and are primarily responsible for maintaining lens transparency and establishing the gradient of refractive index necessary for proper focusing of images onto the retina. Age‐related modifications to lens crystallins have been linked to insolubilization and cataractogenesis in human lenses. Matrix‐assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has been shown to provide spatial maps of such age‐related modifications. Previous work demonstrated that, under standard protein IMS conditions, α‐crystallin signals dominated the mass spectrum and age‐related modifications to α‐crystallins could be mapped. In the current study, a new sample preparation method was optimized to allow imaging of β‐ and γ‐crystallins in ocular lens tissue. Acquired images showed that γ‐crystallins were localized predominately in the lens nucleus whereas β‐crystallins were primarily localized to the lens cortex. Age‐related modifications such as truncation, acetylation, and carbamylation were identified and spatially mapped. Protein identifications were determined by top‐down proteomics analysis of lens proteins extracted from tissue sections and analyzed by LC‐MS/MS with electron transfer dissociation. This new sample preparation method combined with the standard method allows the major lens crystallins to be mapped by MALDI IMS.  相似文献   

13.
Periodontal disease is a serious dental problem because it does not heal naturally and leads to tooth loss. In periodontal disease, inflammation at periodontal tissue is thought as predominant, and its effect against tooth itself remains unclear. In this study, we applied matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS) to teeth for the first time. By comparing anatomical structure of tooth affected with periodontal disease with normal ones, we analyzed traces of the disease on tooth. We found signals characteristic of enamel, dentin, and dental pulp, respectively, in mass spectra obtained from normal teeth. Ion images reconstructed using these signals showed anatomical structures of the tooth clearly. Next, we performed IMS upon teeth of periodontal disease. Overall characteristic of the mass spectrum appeared similar to normal ones. However, ion images reconstructed using signals from the tooth of periodontal disease revealed loss of periodontal ligament visualized together with dental pulp in normal teeth. Moreover, ion image clearly depicted an accumulation of signal at m/z 496.3 at root surface. Such an accumulation that cannot be examined only from mass spectrum was revealed by utilization of IMS. Recent studies about inflammation revealed that the signal at m/z 496.3 reflects lyso-phosphatidylcholine (LPC). Infiltration of the signal is statistically significant, and its intensity profile exhibited the influence has reached deeply into the tooth. This suggests that influence of periodontal disease is not only inflammation of periodontal tissue but also infiltration of LPC to root surface, and therefore, anti-inflammatory treatment is required besides conventional treatments.  相似文献   

14.
15.
The work presented in this report describes and demonstrates a protocol for protein imaging analysis of biological tissue using MALDI IMS where histological staining and MS analysis are performed on the same tissue section. Spatial image resolution is shown at 35 μm for sagittal sections of the cerebellum from rat brain.  相似文献   

16.
For identification of clinically relevant masses to predict status, grade, relapse and prognosis of colorectal cancer, we applied Matrix‐assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to a tissue micro array containing formalin‐fixed and paraffin‐embedded tissue samples from 349 patients. Analysis of our MALDI‐IMS data revealed 27 different m/z signals associated with epithelial structures. Comparison of these signals showed significant association with status, grade and Ki‐67 labeling index. Fifteen out of 27 IMS signals revealed a significant association with survival. For seven signals (m/z 654, 776, 788, 904, 944, 975 and 1013) the absence and for eight signals (m/z 643, 678, 836, 886, 898, 1095, 1459 and 1477) the presence were associated with decreased life expectancy, including five masses (m/z 788, 836, 904, 944 and 1013) that provided prognostic information independently from the established prognosticators pT and pN. Combination of these five masses resulted in a three‐step classifier that provided prognostic information superior to univariate analysis. In addition, a total of 19 masses were associated with tumor stage, grade, metastasis and cell proliferation. Our data demonstrate the suitability of combining IMS and large‐scale tissue micro arrays to simultaneously identify and validate clinically useful molecular marker. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous‐based buffer for tissue section preparation before matrix‐assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water–acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14‐day mouse fetus whole‐body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on‐tissue MALDI analysis compared with solely conventional organic rinsing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Prefabricated surfaces containing α‐cyano‐4‐hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix‐assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α‐cyano‐4‐hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography‐tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine‐rich C‐kinase substrate (29.8 kDa) and spectrin alpha chain, non‐erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre‐coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here, we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix‐assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4‐hydroxy‐3‐methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high‐mass resolution and MSn IMS. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high‐performance liquid chromatography (HPLC)‐MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross‐linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号