首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear magnetic resonance (NMR) plays a significant role in porous media analysis and petroleum exploration, but its response is significantly influenced by the internal magnetic field gradient in fluid saturated porous medium, which obviously limits the accuracy of rock core analysis and logging interpretation. The influential factors of the internal magnetic field gradient in formation and its influences on NMR response are studied in this paper, based on NMR mechanism through one- and two-dimensional core NMR experiments. The results indicate that the internal magnetic field gradient is positively correlated with the static magnetic field strength and the magnetic susceptibility difference between pore fluid and solid grains, while it presents negative correlation with pore radius. The internal magnetic field gradient produces an additional diffusion relaxation in hydrogen relaxation system and accelerates the attenuation of magnetization vector. As a result, T2 spectrum shifts to the left and NMR porosity and diffusion coefficient of the fluid could be inaccurate. This research sets a foundation for the NMR porosity correction and fluid distribution on T2-G maps based on the internal magnetic field gradient correction.  相似文献   

2.
Driven-equilibrium fast saturation recovery (DEFSR), as a new method for two-dimensional (2-D) nuclear magnetic resonance (NMR) relaxation measurement based on pulse sequence in flowing fluid, is proposed. The two-dimensional functional relationship between the ratio of transverse relaxation time to longitudinal relaxation time of fluid (T 1/T 2) and T 1 distribution is obtained by means of DEFSR with only two one-dimensional measurements. The rapid measurement of relaxation characteristics for flowing fluid is achieved. A set of the down-hole NMR fluid analysis system is independently designed and developed for the fluid measurement. The accuracy and practicability of DEFSR are demonstrated.  相似文献   

3.
The carbonate reservoir has a number of properties such as multi-type pore space, strong heterogeneity, and complex pore structure, which make the classification of reservoir pore structure extremely difficult. According to nuclear magnetic resonance (NMR) T 2 spectrum characteristics of carbonate rock, an automatic pore structure classification and discrimination method based on the T 2 spectrum decomposition is proposed. The objective function is constructed based on the multi-variate Gaussian distribution properties of the NMR T 2 spectrum. The particle swarm optimization algorithm was used to solve the objective function and get the initial values and then the generalized reduced gradient algorithm was proposed for solving the objective function, which ensured the stability and convergence of the solution. Based on the featured parameters of the Gaussian function such as normalized weights, spectrum peaks and standard deviations, the combinatory spectrum parameters (by multiplying peak value and normalized weight for every peak) are constructed. According to the principle of fuzzy clustering, the carbonate rock pore structure is classified automatically and the discrimination function of each pore structure type is obtained using Fisher discrimination analysis. The classification results were analyzed with the corresponding casting thin section and scanning electron microscopy. The study shows that the type of the pore structure based on the NMR T 2 spectrum decomposition is strongly consistent with other methods, which provides a good basis for the quantitative characterization of the carbonate rock reservoir pore space and lays a foundation of the carbonate rock reservoir classification based on NMR logging.  相似文献   

4.
It has been a great challenge to determine permeability in tight gas sands due to the generally poor correlation between porosity and permeability. The Schlumberger Doll Research (SDR) and Timur–Coates permeability models, which have been derived for use with nuclear magnetic resonance (NMR) data, also lose their roles. In this study, based on the analysis of the mercury injection experiment data for 20 core plugs, which were drilled from tight gas sands in the Xujiahe Formation of central Sichuan basin, Southwest China, two empirical correlations between the pore structure index ( $ \sqrt {{K \mathord{\left/ {\vphantom {K \varphi }} \right. \kern-0em} \varphi }} $ , defined by the square root of the ratio of rock permeability and porosity) and the R 35 (the pore throat radius corresponding to 35.0 % of mercury injection saturation), the pore structure index and the Swanson parameter have been developed. To consecutively estimate permeability in field applications, based on the study of experimental NMR measurements for 36 core samples, two effective statistical models, which can be used to derive the Swanson parameter and R 35 from the NMR T 2 logarithmic mean value, have been established. These procedures carried out on the experimental data set can be extended to reservoir conditions to estimate consecutive formation permeability along the intervals with which NMR logs were acquired. The processing results of several field examples using the proposed technique show that the classification scale models are effective only in tight gas reservoirs, whereas the SDR and Timur–Coates models are inapplicable. The R 35-based model is of significance in thin sands with high porosity and high permeability, but the predicted permeability curves in tight gas sands are slightly lower. In tight gas and thin sands, the Swanson parameter model is all credible.  相似文献   

5.
Some specific features of studying fluid flows with a NMR spectrometer are considered. The consideration of these features in the NMR spectrometer design makes it possible to determine the relative concentrations of paramagnetic ions and measure the longitudinal and transverse relaxation times (T1 and T2, respectively) in fluid flows with an error no larger than 0.5%. This approach allows one to completely avoid errors in determining the state of a fluid from measured relaxation constants T1 and T2, which is especially urgent when working with medical suspensions and biological solutions. The results of an experimental study of fluid flows are presented.  相似文献   

6.
In this paper, it is shown how free induction decay signals recorded in the Earth’s magnetic field from water protons confined in porous media can be used to derive transversal relaxation times (T 2) and their distributions. After T 2 determination of six sintered glass samples with various pore sizes, the common theoretical model can be fitted to the data set. The T 2 distribution of water protons in a bimodal porous system is analyzed and compared to mercury porosimetry results. The implications for the calculation of pore sizes and pore size distributions of porous media by this method are discussed.  相似文献   

7.
An experimental protocol is described that allows two-dimensional (2D) nuclear magnetic resonance (NMR) correlations of apparent diffusion coefficient Dapp and effective transverse relaxation time T2,eff to be acquired on a bench-top spectrometer using pulsed field gradients (PFG) in such a manner as to emulate DappT2,eff correlations acquired using a well-logging tool with a fixed field gradient (FFG). This technique allows laboratory-scale NMR measurements of liquid-saturated cored rock to be compared directly to logging data obtained from the well by virtue of providing a comparable acquisition protocol and data format, and hence consistent data processing. This direct comparison supports the interpretation of the well-logging data, including a quantitative determination of the oil/brine saturation. The DT2 pulse sequence described here uses two spin echoes (2SE) with a variable echo time to encode for diffusion. The diffusion and relaxation contributions to the signal decay are then deconvolved using a 2D numerical inversion. This measurement allows shorter relaxation time components to be probed than in conventional diffusion measurements. A brief discussion of the numerical inversion algorithms available for inverting these non-rectangular data is included. The PFG-2SE sequence described is well suited to laboratory-scale studies of porous media and short T2 samples in general.  相似文献   

8.
Both direct and indirect methods for determining soil–water characteristic curves rely on determination of some empirical coefficients, which may not necessarily represent real microscopic mechanisms. Proton nuclear magnetic resonance (NMR) is a powerful tool for investigating water content and their interaction with solid particles in porous media. The NMR technique is widely used in food science and petroleum. In the present study, proton NMR spin–spin relaxation time (T 2) distribution measurement is integrated with a Tempe apparatus to characterize the hydraulic processes of unsaturated soils, shedding insights into the microscopic mechanisms of pore water distribution and migration in the soil during hydraulic cycles. It is revealed that during a drying process the drainage of pore water occurs sequentially from larger pores to smaller pores, whereas in a wetting process the water invades into the soil sequentially from smaller pores to larger pores. A new procedure is developed which can be used to determine the pore size distribution of the soil based on the NMR T 2 distribution measurements; compared to the traditional methods, the new method is rapid and non-destructive. The new procedure is validated by comparing the new result with the measurement of the mercury intrusion porosimetry.  相似文献   

9.
To help understand which tissue parameters best account for the water proton NMR relaxation times, the longitudinal relaxation time (T2), the transverse relaxation time (T2), and the water content of 16 tissues from normal adult rats were measured at 10.7 MHz and 29°C. Regression analyses between the above and other tissue parameters were performed. These other tissue parameters included: the amounts of various organic and inorganic components, protein synthetic rate, oxygen consumption rate, and morphological composition. In addition, the differences in T1, T2, and water content values between normal liver and malignant tumor (Morris #7777 a transplantable hepatoma) were studied to help understand how a disease state can be detected and characterized by NMR spectroscopy. The results of this study and information from the literature allow the following generalizations to be made about tissue T1 and T2 values: (1) Each normal tissue has rather consistent and characteristic T1 and T2 relaxation times which are always shorter than the T1 and T2 of bulk water; (2) tissues with higher water content tend to have longer T1 relaxation times; (3) tissue T2 values are not, however, as well correlated with water content as T1 values; (4) tissues with shorter T1 values have higher calculated hydration fractions, greater amounts of rough endoplasmic reticulum, and a greater rate of protein synthetic activity; (5) tissues with higher lipid content, associated with intracellular non-membrane bounded lipid droplets, tend to have longer T2 values; (6) tissues with greater overall surface area, whether in the form of cellular membranes or intracellular or extracellular fibrillar macromolecules, tend to have shorter T2 values; (7) the differences between T1 and T2 values between tumor and normal tissues correlated with differences in the volume fraction (amounts) of extracellular fluid volumes and in the amounts of membrane and fibrillar surface area in the cells. The above generalizations should be useful in predicting T1 and T2 changes associated with specific tissue pathologies.  相似文献   

10.
The proton spin-lattice relaxation time T1, in the nematic liquid crystal 4-pentyl-4′-cyanobiphenyl confined in a glassy porous matrix has been measured in a wide Larmor frequency range of 1 · 102?2 · 107 Hz employing the fast field-cycling NMR technique. A strong influence of the restricted geometry on the character of the T1 dispersion was found. Our investigation clearly demonstrates the importance of the translationally induced molecular reorientations in inhomogeneous director field for the relaxation in the samples with 200 and 80 nm mean pore size. The experimental results are in a good agreement with the theoretical predictions. In the sample with 7 nm pore size the main contribution to the relaxation is ascribed to the slowing down of the molecular motion in the near-surface layer. Zero-field 1H NMR spectra of a microconfined liquid crystal are reported for the first time.  相似文献   

11.
The signal-to-noise ratio and the T2 contrast in 1H NMR microscopy are strongly affected by self-diffusion effects. Here, we investigate the free diffusion of water within imaging gradients. As a result we obtain an apparent relaxation time T2 which in NMR microscopy is at least one order of magnitude smaller than the true T2 value of water in the object. This apparent T2 relaxation is considerably reduced by improving spatial resolution. We conclude that quantitative true T2 values cannot be calculated from series of images with increasing echo time. Furthermore, from the knowledge of the apparent T2, an optimum short echo time can be found in order to maximize signal-to-noise ratio. Our theoretical findings are confirmed by phantom experiments at 11.75 T field strength.  相似文献   

12.
The resistivity experimental measurements of 36 core samples, which were drilled from low permeability reservoirs of southwest China, illustrate that the saturation exponents are not agminate, but vary from 1.627 to 3.48; this leads to a challenge for water saturation estimation in low permeability formations. Based on the analysis of resistivity experiments, laboratory nuclear magnetic resonance (NMR) measurements for all 36 core samples, and mercury injection measurements for 20 of them, it was observed that the saturation exponent is proportional to the proportion of small pore components and inversely proportional to the logarithmic mean of NMR T 2 spectrum (T 2lm). For rocks with high proportion of small pore components and low T 2lm, there will be high saturation exponents, and vice versa. The proportion of small pore components is characterized by three different kinds of irreducible water saturations, which are estimated by defining 30, 40 and 50 ms as T 2 cutoffs separately. By integrating these three different kinds of irreducible water saturations and using T 2lm, a technique of calculating the saturation exponent from NMR logs is proposed and the corresponding model is established. The credibility of this technique is confirmed by comparing the predicted saturation exponents with the results from the core analysis. For more than 85 % of core samples, the absolute errors between the predicted saturation exponents from NMR logs and the experimental results are lower than 0.25. Once this technique is extended to field application, the accuracy of water saturation estimation in low permeability reservoirs will be improved significantly.  相似文献   

13.
A portable nuclear magnetic resonance (NMR) sensor with an adjustable ‘clamp’ structure is constructed for the noninvasive measurement of the aging status of silicone rubber insulators used in the high-voltage power transmission. The Carr–Purcell–Meiboom–Gill sequence was employed to record the 1H NMR transverse relaxation curves of silicone rubber insulators with different service times. The decay curves were fitted to mono-exponential and bi-exponential functions. Further data processing of the decay curves was performed with the inverse Laplace transformation for one-dimensional T 2 distribution analysis, focusing on the mean lifetime of the long T 2 component (T 2long mean). The results demonstrate that an increase in the aging level of the insulator clearly results in a decrease of T 2long mean. For comparison, the relative permittivity of the insulator was also measured. It shows the same trend as that of T 2long mean. This indicates that the T 2long mean relaxation time obtained from our portable NMR sensor can reliably be used as an index to reflect the aging status of silicone rubber insulator.  相似文献   

14.
MM Bajaj  M Kasaya 《Pramana》1977,9(3):297-302
Experimental results on the nuclear spin-lattice and nuclear spin-spin relaxation times in the ferromagnetic EuB6 at temperatures below 4·2 K are presented using the external magnetic field,H ext, in the range of 0 ⩽H ext ⩽ 10 kG. Nuclear spin-spin relaxation time computed on the basis of the Suhl-Nakamura process turns out to be 3·2μs, which compares well with the experimental value 11·1μs obtained with the 10 kG magnetic field at 1·7 K. It is found that in the ferromagnetic EuB6,T 1 is approximately 5 × 103 times larger thanT 2 at 1·7 K with the 10 kG magnetic field. Thus the effect ofT 1 onT 2 can be neglected. From the experimental value ofT 2, the value of the homogeneous line broadening is found to be 14 kHz. The corresponding value obtained from the cw method is 175 kHz. This evidently shows the presence of the inhomogeneous line broadening in the cw NMR.  相似文献   

15.
Pericarp tissues of tomato varieties Quest and Cameron were studied by low-field nuclear magnetic resonance (NMR) at a controlled temperature of 20°C. The spin-spin relaxation times and the water diffusion coefficients were measured with Carr-Parcell-Meiboom-Gill and pulsed field gradient multi-spin-echo (PFGMSE) NMR sequences. Four relaxing components were extracted from the spin-spin relaxation. The components withT 2=11 ms,T 2=65 ms,T 2=430 ms andT 2=1500 ms were related to the nonexchangeable protons and water proton in each cell compartment (i.e., cell wall-extracellular space, cytoplasm and vacuole, respectively). In contrast to the relative intensities, theT 2 values appeared insensitive to variety and harvest period. The difference in relative intensity was related to the size of the pericarp cell. The water self-diffusion coefficients for each cell compartment were determined simultaneously with the PFGMSE sequence. The water self-diffusion coefficients for the vacuole and cytoplasm were not affected by the harvest date or variety. However, the water self-diffusion in the cell wall-extracellular space was significantly different between the two varieties.  相似文献   

16.
We present an approach to increase the detection sensitivity of NMR by shortening the spin-lattice relaxation time using transient paramagnetic species created by light irradiation of “optorelaxer” molecules. In the ultimate implementation of this concept, not yet realized here, these transient species are absent during the detection period, thereby avoiding the loss of spectral resolution caused by inhomogeneous broadening from paramagnetic species. Real-time control of NMR relaxation by visible light is demonstrated with Fe(II)(ptz)6(BF4)2, (ptz = 1-propyltetrazole), abbreviated FePTZ. Illumination of FePTZ at 30 K results in a decrease of the 1H NMR spin-lattice relaxation time T1 due to formation of a high spin photoexcited state. The 1H NMR of polystyrene containing a low concentration of FePTZ molecules shows a similar reduction in T1, establishing that FePTZ can act as an optorelaxer for the protons of a matrix. Numerical modeling of the spin-diffusion processes from the protons in a FePTZ core to those in a shell of polystyrene accounts for the observed T1 effects under both dark and light conditions. Additionally, 1H MAS (magic-angle spinning) NMR results for pure FePTZ provide information on the isotropic and anisotropic portions of the electron-nuclear hyperfine interactions.  相似文献   

17.
Little is known about129Xe NMR spectral features and spin-lattice relaxation behavior, and the dynamics of xenon atoms, for xenon adsorbed on solid surfaces at cryogenic temperatures (≤77 K), where exchange with gas-phase atoms is not a significant complication. We report129Xe NMR experiments at 9,4 T that provide such information for xenon adsorbed onto the hydroxylated surface of a number of microporous silica samples at 77 K. A convenient design for these cryogenic experiments is described. Dynamics of surface-adsorbed xenon atoms on the time scale of seconds can be observed by129Xe NMR hole-burning experiments; much slower dynamics occurring over hours and days are evidenced from changes with time of the129Xe NMR chemical shifts. The peak maxima occur in the region ca. 180–316 ppm, considerably downfield of129Xe shifts previously reported on surfaces at higher temperatures, and closer to the shift of xenon bulk solid (316.4±1 ppm). The129Xe spin-lattice relaxation timesT 1 range over five orders of magnitude; possible explanations for both nonexponential relaxation behavior and extremely shortT 1 values (35 ms) are discussed. Preliminary131Xe and1H NMR results are presented, as well as a method for greatly increasing the sensitivity of129Xe NMR detection at low temperatures by using closely-spaced trains of rf pulses.  相似文献   

18.
We present in this work a review concerning wide frequency rangeT 1 proton NMR relaxation studies performed in compounds exhibiting columnar mesophases, namely the Colho mesophase in the case of a liquid crystal of discotic molecules and the øh mesophase in the case of a liquid crystal of biforked molecules. These NMR relaxation studies were performed combining conventional and fast field cycling NMR techniques in a frequency range between 100 Hz and 300 MHz. The possibility of probing such a large frequency range has provided a way to effectively distinguish the influence, on theT 1 relaxation profiles, of the different molecular movements observed in this type of mesophases. In addition, we present a comparison between the molecular dynamics in columnar (øh) and lamellar (SmC) mesophases exhibited by the same biforked compound.  相似文献   

19.
Relaxation-time and diffusion-weighted NMR micrographs have been obtained for single neurons isolated from Aplysia californica. These images allow the nucleus and cytoplasm to be clearly differentiated, in contrast to proton spin-density images, which appear relatively homogenous. Images of the spatial distribution of T1 and T2 relaxivities and the diffusion coefficient (D), as well as average values for T1, T2, and D in the cytoplasm and nucleus, were calculated from sets of appropriately weighted images. In all cases, water in the nucleus had relaxation and diffusion properties markedly differing from those of cytoplasmic water, which in turn had properties which were distinct from those of free water. Additionally, the cytoplasmic T2 was observed to triple following cell death, which is attributed to cytoplasmic dilution as water enters the cell. The work presented represents the first effort at a consistent exploration of the spatial distribution of NMR characteristics of water within intact single cells. These studies have implications both for modeling the NMR characteristics of water in neuronal tissues based on an understanding of the characteristics of water in different cell compartments and for understanding water/macromolecule interactions within cells. NMR microscopy studies such as these may help form a foundation for understanding and interpreting NMR characteristics measured from large assemblies of cells, i.e., spectroscopy and imaging of living tissues.  相似文献   

20.
《Solid State Ionics》2006,177(19-25):1673-1676
The nanocrystalline perovskite material Li0.15La0.28TaO3 has been synthesized by alkoxide-free Pechini type sol gel method. 7Li NMR measurements were carried out using a Bruker Avance 300 spectrometer at 116 MHz over the temperature range 150 to 400 K. Longitudinal spin-lattice relaxation times (T1) measured by saturation recovery and longitudinal relaxation times in the rotating frame (T) measured using the pulse sequence (π/2–spin lock τ acquisition) with lock radio-frequency field υ = 62.5 kHz and the T2 relaxation time measured by Hahn echo are presented. The static Hahn-echo spectra show two different lithium sites in this perovskite oxide. Further, the relaxation measurements T1 and T show two different types of lithium cations with fast and slow dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号