首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present paper deals with the motion of a Brownian particle on two identical but shifted potential surfaces, coupled via a tunneling matrix element in an external electric field. Dissipation is induced by a heat bath represented by an infinite set of harmonic oscillators with a continuum range of frequencies. We derive a perturbative solution for the quantum coherence term of the particle system after performing a small-polaron-like transformation. This is subsequently necessary for the extraction of an equation that describes the reduced dynamics and the minimal action path of the Brownian particle. Finally we extract expressions for the population relaxation rate and the pure quantum-dephasing rate of the two-level system. Received 4 January 2001 and Received in final form 12 March 2001  相似文献   

2.
We investigate the stochastic dynamics of an one-dimensional ring with N self-driven Brownian particles. In this model neighboring particles interact via conservative Morse potentials. The influence of the surrounding heat bath is modeled by Langevin-forces (white noise) and a constant viscous friction coefficient γ. The Brownian particles are provided with internal energy depots which may lead to active motions of the particles. The depots are realized by an additional nonlinearly velocity-dependent friction coefficient γ 1(v) in the equations of motions. In the first part of the paper we study the partition functions of time averages and thermodynamical quantities (e.g. pressure) characterizing the stationary physical system. Numerically calculated non-equilibrium phase diagrams are represented. The last part is dedicated to transport phenomena by including a homogeneous external force field that breaks the symmetry of the model. Here we find enhanced mobility of the particles at low temperatures. Received 21 July 2001  相似文献   

3.
The hopping motion of a classical bounded pair of two particles along a chain is investigated. It is shown that in the asymmetric case of the system dynamics including excited states which differ from the respective ground states by the barrier to be overcome by one of the two particles, the over- and underpopulation of these excited states leads to a directed motion of the particle pair. Thereby, overpopulation results in one direction of motion, whereas underpopulation results in the opposite direction, and the mean velocity is determined by the amount of over-resp. underpopulation. For small deviations from equilibrium, the system exhibits linear response well known from other ratchet-type models. Possible generalizations and applications are discussed. Received 17 August 2001 and Received in final form 11 October 2001  相似文献   

4.
We analyse the coherence properties of two particles trapped in a one-dimensional harmonic potential. This simple model allows us to derive analytic expressions for the first and second order coherence functions. We investigate their properties depending on the particle nature and the temperature of the quantum gas. We find that at zero temperature non-interacting bosons and fermions show very different correlations, while they coincide for higher temperatures. We observe atom bunching for bosons and atom anti-bunching for fermions. When the effect of s-wave scattering between bosons is taken into account, we find that the range of coherence is enhanced or reduced for repulsive or attractive potentials, respectively. Strongly repelling bosons become in some way more “fermion-like" and show anti-bunching. Their first order coherence function, however, differs from that for fermions. Received 19 September 2002 Published online 4 February 2003  相似文献   

5.
A new and rather trivial model is suggested with mechanism that implies simultaneous violation of the zeroth and the second laws of thermodynamics. Mathematically rigorous quantum theory reduces to a trivial application of the Golden rule formula. It yields exciton on-energy-shell diffusion caused by bath-nonassisted excitation hopping between tails of different exciton site levels ε1 < ε2 broadened by bath-assisted finite life-time effects. The elastic character of the hopping implies 1 ↔ 2-symmetric transfer rate W. Thus the net diffusion exciton flow W(P 1 - P 2) and also, as argued, the net energy flow are possible due to different near-to-equilibrium exciton populations P 1 > P 2. As the sites are provided with two different baths, the population imbalance and the flows survive even for slightly different local bath temperatures T 1 < T 2 < T 1ε21. Thus spontaneous exciton and also energy flows against temperature step become possible, in contradiction with the Clausius form of the second law. Violations of both the laws disappear in the high-temperature, i.e. classical limit Received 16 May 2001 and Received in final form 20 September 2001  相似文献   

6.
Separating multidimensional problems into that of a relevant system which is coupled to a bath of harmonic oscillators is a common concept in condensed phase theory. Focusing on the specific problem of intramolecular proton transfer in an isolated tropolone derivative, we consider the reactive proton moving in the plane of the molecule as the system and the remaining substrate normal modes as the bath. An all-Cartesian system-plus-substrate Hamiltonian is constructed employing density functional theory. It is then used to determine the temperature-dependent effective reduced reaction Hamiltonian and the state-to-state dissipation rates induced via the system-substrate coupling up to the bi-quadratic order. The important substrate modes for the T1-relaxation and the pure T2-dephasing rates, which are either intra- or inter-well in nature, are identified numerically and analyzed physically with molecular details. Received 19 November 2001 and Received in final form 19 February 2002  相似文献   

7.
We set up a forward - backward path integral for a point particle in a bath of photons to derive a master equation for the density matrix which describes electromagnetic dissipation and decoherence. We also derive the associated Langevin equation. As an application, we recalculate the Wigner-Weisskopf formula for the natural line width of an atomic state at zero temperature and find, in addition, the temperature broadening caused by the decoherence term. Our master equation also yields the correct Lamb shift of atomic levels. The two equations may have applications to dilute interstellar gases or to few-particle systems in cavities. Received 29 November 2000 and Received in final form 11 February 2001  相似文献   

8.
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, f (t) = f 0exp - (t/τ)β , with the exponent β increasing with the temperature. The relaxation time diverges as an Arrhenius law when T→ 0. Received 24 May 2001 and Received in final form 12 September 2001  相似文献   

9.
Spontaneous thermal expansion of nematic elastomers   总被引:1,自引:0,他引:1  
We study the monodomain (single-crystal) nematic elastomer materials, all side-chain siloxane polymers with the same mesogenic groups and crosslinking density, but differing in the type of crosslinking. Increasing the proportion of long di-functional segments of main-chain nematic polymer, acting as network crosslinking, results in dramatic changes in the uniaxial equilibrium thermal expansion on cooling from the isotropic phase. At higher concentration of main chains their behaviour dominates the elastomer properties. At low concentration of main-chain material, we detect two distinct transitions at different temperatures, one attributed to the main-chain, the other to the side-chain component. The effective uniaxial anisotropy of nematic rubber, r(T) = / proportional to the effective nematic order parameter Q(T), is given by an average of the two components and thus reflects the two-transition nature of thermal expansion. The experimental data is compared with the theoretical model of ideal nematic elastomers; applications in high-amplitude thermal actuators are discussed in the end. Received 25 June 2001 and Received in final form 29 September 2001  相似文献   

10.
We study the difference between on site Hubbard and long range Coulomb repulsions for two interacting particles in a disordered chain. The system size L (in units of the lattice spacing) is of the order of the one particle localization length and the energies are taken near the band center. In the two cases, the limits of weak and strong interactions are characterized by uncorrelated energy levels and are separated by a crossover regime where the states are more extended and the spectra more rigid. U denoting the interaction strength and t the kinetic energy scale, the crossovers take place for interaction energy to kinetic energy ratios U/t and U/(2tL) of order one, for Hubbard and Coulomb repulsions respectively. While Hubbard repulsion can only yield weak critical chaos with intermediate spectral statistics, Coulomb repulsion can drive the two particle system to quantum chaos with Wigner-Dyson spectral statistics. The interaction matrix elements are studied to explain this difference. Received 21 March 2000 and Received in final form 5 February 2001  相似文献   

11.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

12.
We use the self-consistent harmonic approximation (SCHA) to study the two-dimensional classical Heisenberg anisotropic (easy-plane) ferromagnetic model including nearest- and next-nearest neighbor exchange interactions. For temperatures much lower than the Kosterlitz-Thouless phase transition temperature T KT, spin waves must be the most relevant excitations in the system and the SCHA must account for its behavior. However, for temperatures near T KT, we should expect vortex pairs to be quite important. The effect of these vortex excitations on the phase transition temperature is included in our theory as a renormalization of the exchange interactions. Then, combining the SCHA theory to the renormalization effect due to vortex pairs, we calculate the dependence of T KT as a function of the easy-plane anisotropies and exchange interactions. Received 3 April 2001 and Received in final form 20 September 2001  相似文献   

13.
We have calculated the real part of the nonlinear dielectric susceptibility of amorphous insulators in the kHz range, by using the two-level system model and a nonperturbative numerical quantum approach. At low temperature T, it is first shown that the standard two-level model should lead to a decrease of when the measuring field E is raised, since raising E increases the population of the upper level and induces Rabi oscillations cancelling the ones induced from the ground level. This predicted E-induced decrease of is at odds with experiments. However, a better, though still not perfect, agreement with low-frequency experimental nonlinear data is recovered if, in our fully quantum simulations, interactions between defects are taken into account by a new relaxation rate whose efficiency increases as , as was proposed recently by Burin et al. [Phys. Rev. Lett. 86, 5616 (2001)]. In this approach, the behavior of at low T is mainly explained by the efficiency of this new relaxation channel. Since a quantitative understanding of glasses is still missing, we finally discuss experiments whose results should yield a refined understanding of this new relaxation mechanism: i) a completely new nonlinear behavior should be found for samples whose thickness is ≃ 10 nm; ii) a decrease of nonequilibrium effects should be found when E is increased. Received 19 September 2002 / Received in final form 4 December 2002 Published online 14 March 2003  相似文献   

14.
The purpose of this article is to discuss cluster expansions in dense quantum systems, as well as their interconnection with exchange cycles. We show in general how the Ursell operators of order l≥ 3 contribute to an exponential which corresponds to a mean-field energy involving the second operator U2, instead of the potential itself as usual - in other words, the mean-field correction is expressed in terms of a modification of a local Boltzmann equilibrium. In a first part, we consider classical statistical mechanics and recall the relation between the reducible part of the classical cluster integrals and the mean-field; we introduce an alternative method to obtain the linear density contribution to the mean-field, which is based on the notion of tree-diagrams and provides a preview of the subsequent quantum calculations. We then proceed to study quantum particles with Boltzmann statistics (distinguishable particles) and show that each Ursell operator Un with n≥ 3 contains a “tree-reducible part”, which groups naturally with U2 through a linear chain of binary interactions; this part contributes to the associated mean-field experienced by particles in the fluid. The irreducible part, on the other hand, corresponds to the effects associated with three (or more) particles interacting all together at the same time. We then show that the same algebra holds in the case of Fermi or Bose particles, and discuss physically the role of the exchange cycles, combined with interactions. Bose condensed systems are not considered at this stage. The similarities and differences between Boltzmann and quantum statistics are illustrated by this approach, in contrast with field theoretical or Green's functions methods, which do not allow a separate study of the role of quantum statistics and dynamics. Received 18 October 2001  相似文献   

15.
A detailed numerical analysis of exciton-exciton interactions in semiconductor quantum wells is presented. The theory is based on the dynamics-controlled truncation formalism and evaluated for the case of resonant excitation of 1s-heavy-hole excitons. It is formulated in terms of standard concepts of scattering theory, such as the forward-scattering amplitude (or T-matrix). The numerical diagonalization of the exciton-exciton interaction matrix in the 1s-approximation yields the excitonic T-matrix. We discuss the role of the direct and exchange interaction in the effective two-exciton Hamiltonian, which determines the T-matrix, evaluated within the 1s-subspace, and also analyze the effects of the excitonic wave function overlap matrix. Inclusion of the latter is shown to effectively prevent the 1s-approximation from making the Hamiltonian non-hermitian, but a critical discussion shows that other artefacts may be avoided by not including the overlap matrix. We also present a detailed analysis of the correspondence between the excitonic T-matrix in the 1s-approximation and the well-known T-matrix governing two-particle interactions in two dimensional systems via short-range potentials. Received 3 August 2001 and Received in final form 26 December 2001  相似文献   

16.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

17.
We report a new quantum cryptographic system involving single sideband detection and allowing an implementation of the BB84 protocol. The transmitted bits are reliably coded by the phase of a high frequency modulating signal. The principle of operation is described in terms of both classical and quantum optics. The method has been demonstrated experimentally at 1 550 nm using compact and conventional device technology. Single photon interference has been obtained with a fringe visibility greater than 98%, indicating that the system can be used in view of quantum key distribution potentially beyond 50-km-long standard single-mode fiber. Received 13 July 2001 and Received in final form 30 November 2001  相似文献   

18.
We have investigated the algebraic structure of the Fokker-Planck equation with a variable diffusion coefficient and a time-dependent mean-reverting force. Such a model could be useful to study the general problem of a Brownian walker with a space-dependent diffusion coefficient. We also show that this model is related to the Fokker-Planck equation with a constant diffusion coefficient and a time-dependent anharmonic potential of the form V(x, t) = ?a(t)x 2 + b ln x, which has been widely applied to model different physical and biological phenomena, e.g. the study of neuron models and stochastic resonance in monostable nonlinear oscillators. Using the Lie algebraic approach we have derived the exact diffusion propagators for the Fokker-Planck equations associated with different boundary conditions, namely (i) the case of a single absorbing barrier, and (ii) the case of two absorbing barriers. These exact diffusion propagators enable us to study the time evolution of the corresponding stochastic systems. Received 23 October 2001 and Received in final form 24 December 2001  相似文献   

19.
Fronts of weakly exothermal chemical reaction may propagate in solids at very low temperatures ( 4KT≤77K) thanks to a quite unusual mechanism, involving a feedback between the heat produced by the reaction and the disruption of the solid matrix. In this class of phenomena, the reaction may be induced by mechanical constraints, without a large elevation of temperature. On the basis of a simple phenomenological model, we investigate ignition of a propagating front by initially (i) disrupting a localized zone of the solid matrix, or by (ii) introducing a temperature jump, leading to a thermal shock with strong temperature gradients. In particular, we show that reaction can be initiated by disrupting only a very small fraction of the sample. Applications to the problem of initiation of solid explosives by friction or shocks is briefly discussed. Received 26 January 2001 and Received in final form 3 May 2001  相似文献   

20.
Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due to zero-point energy of the mirror. Received 1st August 2001 and Received in final form 12 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号