首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites made from two linear isotropic elastic materials are subjected to a uniform hydrostatic stress. It is assumed that only the volume fraction of each elastic material is known. Lower bounds on all rth moments of the hydrostatic stress field inside each phase are obtained for r?2. A lower bound on the maximum value of the hydrostatic stress field is also obtained. These bounds are given by explicit formulas depending on the volume fractions of the constituent materials and their elastic moduli. All of these bounds are shown to be the best possible as they are attained by the hydrostatic stress field inside the Hashin-Shtrikman coated sphere assemblage. The bounds provide a new opportunity for the assessment of load transfer between macroscopic and microscopic scales for statistically defined microstructures.  相似文献   

2.
The paper deals with the effective linear elastic behaviour of random media subjected to inhomogeneous mean fields. The effective constitutive laws are known to be non-local. Therefore, the effective elastic moduli show dispersion, i.e1 they depend on the “wave vector” k of the mean field. In this paper the well-known Hashin-Shtrikman bounds (1962) for the Lamé parameters of isotropic multi-phase mixtures are generalized to inhomogeneous mean fields k ≠ 0. The bounds involve two-point correlations of random elastic moduli. In the limit k → ∞ the bounds converge to the exact result. The interest is focussed on composites with cell structures and on binary mixtures. To illustrate the results, numerical evaluations are carried out for a binary cell material composed of nearly spherical grains of equal size.  相似文献   

3.
Minimum energy and complementary energy principles are used to derive the upper and lower bounds on the effective elastic moduli of statistically isotropic multicomponent materials in d (d=2 or 3) dimensions. The trial fields, involving harmonic and biharmonic potentials, and free parameters to be optimized, lead to the bounds containing, in addition to the properties and volume proportions of the material components, the three-point correlation information about the microgeometries of the composites. The relations and restrictions among the three-point correlation parameters are explored. The upper and lower bounds are specialized to symmetric cell materials and asymmetric multi-coated spheres, which are optimal or even converge in certain cases. New bounds for random cell polycrystals are constructed with particular results for random aggregates of cubic crystals.  相似文献   

4.
We study the macroscopic mechanical behavior of materials with microscopic holes or hard inclusions. Specifically, we deal with the effective elastic moduli of composites whose microgeometry consists of either soft or hard isolated inclusions surrounded by an elastic matrix. We approach this problem by taking the stiffness of the inclusion phase to be a complex variable, which we eventually evaluate at the soft or hard limits. Our main result states that there is a certain class of non-physical, negative-definite values of the elastic moduli of the inclusion phase for which the effective tensor does not have infinities or become otherwise singular.We present applications of this result to the estimation of effective moduli and to homogenization theorems. The first application involves using complexanalytic methods to obtain rigorous and accurate bounds on the effective moduli of the high-contrast composites under consideration. We also discuss the variational estimates of Rubenfeld & Keller, which yield a complementary set of bounds on these moduli. The best bounds are given by a combination of the analytical and variational results. As a second application, we show that certain known theorems of homogenization for materials with holes are simple consequences of our main result, and in this connection we establish corresponding new theorems for materials with hard inclusions. While our rederivation of the homogenization theorems for materials with holes can be closely related to other known constructions, it appears that certain elements provided by our main result are essential in the proof of homogenization for the hard-inclusion case.  相似文献   

5.
A new model is put forward to bound the effective elastic moduli of composites with ellipsoidal inclusions. In the present paper, transition layer for each ellipsoidal inclusion is introduced to make the trial displacement field for the upper bound and the trial stress field for the lower bound satisfy the continuous interface conditions which are absolutely necessary for the application of variational principles. According to the principles of minimum potential energy and minimum complementary energy, the upper and lower bounds on the effective elastic moduli of composites with ellipsoidal inclusions are rigorously derived. The effects of the distribution and geometric parameters of ellipsoidal inclusions on the bounds of the effective elastic moduli are analyzed in details. The present upper and lower bounds are still finite when the bulk and shear moduli of ellipsoidal inclusions tend to infinity and zero, respectively. It should be mentioned that the present method is simple and needs not calculate the complex integrals of multi-point correlation functions. Meanwhile, the present paper provides an entirely different way to bound the effective elastic moduli of composites with ellipsoidal inclusions, which can be developed to obtain a series of bounds by taking different trial displacement and stress fields.  相似文献   

6.
The Volterra-Wiener functional expansion is employed to the analysis of statistic properties for random heterogeneous solids. For simplicity, the technique is displayed on an elastic suspension of spheres. The basis function in the expansion is chosen as that corresponding to the so-called “perfect disorder” of spheres (PDS), recently introduced by the authors. An infinite hierarchy of equations for the kernels in the expansion is derived whose truncating after the nth equation is shown to yield results for the averaged statistical characteristics which are valid to order cnf, where cf is the volume fraction of the spheres. The kernels for the first and the second approximations, n = 1, 2, are found and related to the displacement fields in an infinite elastic body containing, respectively, one and two spherical inhomogeneities. Within the frame of the so-called singular approximation the overall tensor of elastic moduli for a suspension of perfectly disordered spheres is shown to coincide to the order c2f with a formula, earlier obtained by means of the method of the effective field.  相似文献   

7.
For a homogeneous anisotropic and linearly elastic solid, the general expression of Young’s modulus E(n), embracing all classes that characterize the anisotropy, is given. A constrained extremum problem is then formulated for the evaluation of those directions n at which E(n) attains stationary values. Cubic and transversely isotropic symmetry classes are dealt with, and explicit solutions for such directions n are provided. For each case, relevant properties of these directions and corresponding values of the modulus are discussed as well. Results are shown in terms of suitable combinations of elements of the elastic tensor that embody the discrepancy from isotropy. On the basis of such material parameters, for cubic symmetry two classes of behavior can be distinguished and, in the case of transversely isotropic solids, the classes are found to be four. For both symmetries and for each class of behavior, some examples for real materials are shown and graphical representations of the dependence of Young’s modulus on direction n are given as well.  相似文献   

8.
This paper presents an analytic solution for the stress concentrations within a spherically isotropic, elastic sphere of radius R subject to diametral point load strength test. The method of solution uses the displacement potential approach together with the Fourier–Legendre expansion for the boundary loads. For the case of isotropic sphere, our solution reduces to the solution by Hiramatsu and Oka, 1966 and agrees well with the published experimental observations by Frocht and Guernsey (1953) . A zone of higher tensile stress concentration is developed near the point loads, and the difference between this maximum tensile stress and the uniform tensile stress in the central part of the sphere increases with E/E′ (where E and E′ are the Youngs moduli governing axial deformations along directions parallel and normal to the planes of isotropy, respectively) , G′/G (where G and G′ are the moduli governing shear deformations in the planes of isotropy and the planes parallel to the radial direction) , and ν̄/ν′ (where ν̄ and ν′ are the Poissons ratios characterizing transverse reduction in the planes of isotropy under tension in the same plane and under radial tension, respectively) . This stress difference, in general, decreases with the size of loading area and the Poissons ratio.  相似文献   

9.
It is shown that, among anisotropic elastic materials, only certain orthotropic and hexagonal materials can have Young modulus E(n) independent of the direction n or the shear modulus G(n,m) independent of n and m. Thus the direction surface for E(n) can be a sphere for certain orthotropic and hexagonal materials. The structure of the elastic compliance for these materials is presented, and condition for identifying if the material is orthotropic or hexagonal is given. We also study the case in which n of E(n) and n, m of G(n,m) are restricted to a plane. When E(n) is a constant on a plane so are G(n,m) and Poisson's ratio ν(n,m). The converse, however, does not necessarily hold. A plane on which E(n) is a constant can exist for all anisotropic elastic materials. In particular, existence of such a plane is assured for trigonal, hexagonal and cubic materials. In fact there are four such planes for a cubic material. For these materials, not only E(n) is a constant, two other Young's moduli, the three shear moduli and the six Poisson's ratio on the plane are also constant.  相似文献   

10.
We consider a circular cylinder of linearly elastic material with cylindrically monoclinic material symmetry. This represents a model for a helically wound composite cable or wire rope. The elastic moduli are allowed to be arbitrary functions of the radius r. The cylinder undergoes deformation in which the axis of the cylinder is bent into a plane quartic curve. For the resulting stress field, we obtain exact integrals of the equilibrium equations, and derive simplified expressions for the shear stress resultants and bending moments.  相似文献   

11.
Our earlier derived bounds on the elastic moduli of two-dimensional random polycrystals [1, 2] involve a geometric restriction through an assumption on the form of an isotropic eight-rank tensor. The general form of the tensor is used in this study to reconstruct the bounds, which are expected to approach the scatter range for the moduli of the irregular aggregate.  相似文献   

12.
In connection with the extensive use of various kinds of inhomogeneous materials (glass, carbon and boron reinforced plastics, cermets, concrete, reinforced materials, etc.) in technology, there arises a need to calculate the elastic properties of such systems. Here in each case it is necessary to work out specific methods for finding both elastic fields and effective moduli. Since, as a rule, such methods do not take into account the character of distribution of inhomogeneities in space, which is reflected on the form of the central moment functions [1], they can be referred to a single class and, consequently, can be obtained by a common method [2], In the given paper, by means of the method of solution of stochastic problems for microinhomogeneous solid bodies proposed in the work of the author [2], we find elastic fields and effective moduli in an arbitrary approximation. Depending on the choice of parameters, the latter form bounds within which there lie the exact values of the effective moduli. It is shown that the conditions used earlier for finding these parameters [3] are not the best ones. The effective elastic moduli of an inhomogeneous medium are calculated, and bounds, narrower than the bounds formed in [3], are found for them.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhniki, No. 5, pp. 144–150, September–October, 1973.  相似文献   

13.
We compute Pareto fronts that estimate the upper bounds of the bulk modulus and fluid permeability cross-property space for periodic porous materials over a range of porosities. The fronts are generated numerically using topology optimization, which is a systematic, free-form design algorithm for optimizing material layouts. The presented microstructures demonstrate the trade-off between the bulk modulus and fluid permeability achievable with a multifunctional porous material and will be useful for designers of materials for which both stiffness and permeability are important. Our results suggest that the range of achievable stiffness and permeability properties is significantly restricted when considering elastic isotropy, as compared to cubic elastic symmetry. The estimated bounds are of practical importance given the lack of microstructure-independent theoretical cross-property bounds.  相似文献   

14.
The effective elastic behavior of a transversely isotropic composite made from two incompressible elastic materials is examined. The set of all effective elasticity tensors for transversely isotropic finite rank laminar microstructures is described. The extremal property of this class of microstructures is used to derive a new more precise characterization of the set of effective shear moduli.The perturbation series for the effective elasticity tensor is considered. An explicit formula for the second order perturbation tensor is derived. We describe precisely the set of tensors that correspond to all second order perturbations consistent with transverse isotropy. We apply analytic methods [cf. 27] to show that all second order perturbation tensors are realized by finite rank laminar microstructures.Supported by NSF through Grant DMS-3907658.  相似文献   

15.
Expressions are derived for the rates of change of the S and P tensors for transformed homogeneous inclusions in an anisotropic comparison medium undergoing prescribed changes of its elastic moduli. General results are obtained for ellipsoids and then reduced to yield explicit expressions in terms of the Stroh eigenvalues for cylindrical and disk-shaped inclusions in anisotropic solids and for spherical inclusions in isotropic solids. Applications are illustrated by solving the rate problem for an inhomogeneity in a large volume of a comparison medium, which is shown to be readily adaptable to standard averaging techniques for predictions of rates of change of overall moduli of composite materials experiencing evolution of phase moduli.  相似文献   

16.
This paper presents a first order perturbation analysis of stress concentration and surface morphology instability of elastically anisotropic solids. The boundary of the solids under consideration is periodic along two orthogonal directions. The magnitude of the undulation is sufficiently small so that a half-space model can be used for simplification. We derive expressions for the stress concentration factors and the critical wavelength of the perturbation in terms of the remote stresses, surface energy anisotropy and the elastic anisotropy of the solid. Numerical applications to cubic materials using Barnett–Lothe integrals are also given.  相似文献   

17.
Mindlin's second strain gradient continuum theory for isotropic linear elastic materials is used to model two different kinds of size-dependent surface effects observed in the mechanical behaviour of nano-objects. First, the existence of an initial higher order stress represented by Mindlin's cohesion parameter, b0, makes it possible to account for the relaxation behaviour of traction-free surfaces. Second, the higher order elastic moduli, ci, coupling the strain tensor and its second gradient are shown to significantly affect the apparent elastic properties of nano-beams and nano-films under uni-axial loading. These two effects are independent from each other and allow for separated identification of the corresponding material parameters. Analytical results are provided for the size-dependent apparent shear modulus of a nano-thin strip under shear. Finite element simulations are then performed to derive the dependence of the apparent Young modulus and Poisson ratio of nano-films with respect to their thickness, and to illustrate hole free surface relaxation in a periodic nano-porous material.  相似文献   

18.
19.
Weshow in detail how the McCoy bounds on the effective shear modulus of a statistically isotropic composite, can be simplified and expressed in terms of the volume fraction, f1, and two geometric parameters. ζ1 and η1. We simplify Silnutzer's bounds on the effective elastic moduli of fibre-reinforced composites and find they can be expressed in terms f1and two geometric parameters, ζ'1 and η'1. The parameter ζ'1 also determines bounds on the transport and optical constants of such composites. Also, the Elsayed-McCoy bounds on the transport properties of fibre-reinforced, symmetric-cell materials are shown to depend on three geometric parameters.  相似文献   

20.
We review the theoretical bounds on the effective properties of linear elastic inhomogeneous solids (including composite materials) in the presence of constituents having non-positive-definite elastic moduli (so-called negative-stiffness phases). Using arguments of Hill and Koiter, we show that for statically stable bodies the classical displacement-based variational principles for Dirichlet and Neumann boundary problems hold but that the dual variational principle for traction boundary problems does not apply. We illustrate our findings by the example of a coated spherical inclusion whose stability conditions are obtained from the variational principles. We further show that the classical Voigt upper bound on the linear elastic moduli in multi-phase inhomogeneous bodies and composites applies and that it imposes a stability condition: overall stability requires that the effective moduli do not surpass the Voigt upper bound. This particularly implies that, while the geometric constraints among constituents in a composite can stabilize negative-stiffness phases, the stabilization is insufficient to allow for extreme overall static elastic moduli (exceeding those of the constituents). Stronger bounds on the effective elastic moduli of isotropic composites can be obtained from the Hashin–Shtrikman variational inequalities, which are also shown to hold in the presence of negative stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号