首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A novel and efficient palladium‐catalyzed aminocarbonylation of aryl iodides with amides and N‐alkyl anilines has been developed. The reaction tolerates a wide range of functional groups and is a reliable method for the rapid synthesis of a variety of valuable imides and tertiary benzanilides under an atmospheric pressure of CO.  相似文献   

2.
The 4‐aryl‐1,4‐dihydropyrazines were prepared via the cyclization of N,N‐bisalkylated anilines with ammonium acetate. These reactions were aided by improvements in the synthesis of N,N‐bisalkylated anilines which were alkylated with anilines using ethyl 2‐diazo acetoacetate in a reaction catalyzed by rhodium acetate in the absence of oxygen. A possible mechanistic route is postulated on the basis of the isolation of the N‐alkylation intermediates, which were determined to be N‐aryloxamates by 1H NMR data and X‐ray diffraction.  相似文献   

3.
New N‐aryl substituted 2‐(α‐naphthyl)‐4‐thiazolidinones were prepared by the cyclocondensation of α‐mercaptoacetic acid and corresponding N‐(α‐naphthyliden)anilines. The same starting materials were utilized to obtain a new series of N‐aryl‐N‐[1‐(α‐naphthyl)but‐3‐enyl]amines, which was synthesized through an addition of the Grignard reagent (allylmagnesium bromide) to the double bond C?N of the aldimines. The antichagasic and trichomonacidal in vitro activity, as well as, the antifungal and cytotoxic properties of some of these compounds were evaluated.  相似文献   

4.
An efficient catalytic system of CuI/8‐hydroxyquinalidine was developed for the coupling of aryl iodides and indole as well as some azoles. The reaction could be carried out at 90°C under the condition of relatively low catalyst loading, affording various N‐arylindoles and N‐aryl azoles in good yields. The functionalized and hindered aryl iodides were suitable substrates for this transformation.  相似文献   

5.
A CuI‐catalyzed reductive coupling of ketone‐derived N‐tosylhydrazones with amides is presented. Under the optimized conditions, an array of N‐tosylhydrazones derived from aryl–alkyl and diaryl ketones could couple effectively with a wide variety of (hetero)aryl as well as aliphatic amides to afford the N‐alkylated amides in high yields. The method represents the very few examples for reliably accessing secondary and tertiary amides through a reductive N‐alkylation protocol.  相似文献   

6.
A series of N‐aryl 2‐alkenamides were produced efficiently by treating N‐aryl 3‐(phenylsulfonyl)‐propanamides with potassium tert‐butoxide in THF at 0°C. With out isolation, it was further treated with an additional equivalent of potassium tert‐butoxide and allyl bromide to give N‐allyl N‐aryl 2‐alkenamides in one pot in good yields. Followed by a ring‐closing metathesis reaction, these N‐allyl N‐aryl 2‐alkenamides were respectively converted into corresponding N‐aryl α,β‐unsaturated γ‐lactams in moderate yields.  相似文献   

7.
Convenient and efficient one pot method for the synthesis of 2,5‐disubstituted‐1,3,4‐oxadiazoles based on the reaction of N,N‐dimethyl amides with acid hydrazides has been developed. The methodology is applied to a wide range of difference aryl hydrazide and difference N,N‐dimethyl amides to 2,5‐disubstituted‐1,3,4‐oxadiazoles yield the in good to excellent yields. It will be possible wide useful application in synthesis.  相似文献   

8.
SBA‐15‐functionalized melamine–pyridine group‐supported palladium(0) was found to serve as a heterogeneous and recyclable nanocatalyst for N‐arylation of indoles with aryl iodides under a low catalyst loading (0.3 mol% of Pd) through Ullmann‐type C? N coupling reactions. A variety of aryl iodides could be aminated to provide the N‐arylated products in good to excellent yields without the need of an inert atmosphere. Also, this catalyst was found to be an efficient system for the N‐arylation of other nitrogen‐containing heterocycles with aryl iodides. The heterogeneous palladium catalyst could be recovered by simple filtration of the reaction solution and reused for six cycles without significant loss in its activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
3,3‐Disubstituted oxindoles were divergently synthesized by diastereoselective transformations including nucleophilic addition, alkylation, and cycloaddition using common, axially chiral N‐aryl oxindoles. Notably, high diastereoselectivities (up to >95:5) were observed with ortho‐monosubstituted N‐aryl oxindoles to give various oxindole scaffolds, and facile removal of the p‐(benzyloxy)aryl moiety in axially twisted amides was achieved by a mild, two‐step sequence.  相似文献   

10.
A series of N‐methyl‐N‐(2‐triorganylsiloxyethyl)‐1,2,3,4‐tetrahydro(iso)quinolinium iodides has been synthesized via dehydrocondensation reaction of N‐(2‐hydroxyethyl)‐1,2,3,4‐tetrahydroisoquinoline, N‐(2‐hydroxyethyl)‐1,2,3,4‐tetrahydroquinoline and 4,4‐dimethyl‐N‐(2‐hydroxyethyl)‐4‐sila‐1,2,3,4‐tetrahydroisoquinoline with trialkyl(aryl)hydrosilanes and subsequent alkylation, and characterized by 1H, 13C and 29Si NMR and mass spectroscopy. The biological activity data exhibited a marked enhancement of inhibitory activity against tumour cell lines and almost all the test bacterial/fungal strains in comparison with their 2‐hydroxyethyl precursors. Cytotoxicity in the microgram range against HT‐1080 (human fibrosarcoma) and MG‐22A (mouse hepatoma) cancer cell lines was observed for most of compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
An exceedingly and highly efficient procedure has been described for the synthesis of substituted N‐3‐diaryl‐1,8‐naphthyridin‐2‐amines by the reaction of 2‐chloro‐3‐aryl‐1,8‐naphthyridines with various anilines in the presence of N‐methyl‐2‐pyrrolidone and K2CO3 under thermal green solvent‐free conditions. The significant features of this green reaction include very good yields in purity, simple experimental, short reaction time, easy workability, and avoidance of toxic solvents. All synthesized compounds have been evaluated for their antibacterial activity.  相似文献   

12.
The synthesis of 14‐aryl‐ or 14‐alkyl‐14H‐dibenzo[a,j]xanthenes 3 involving the treatment of naphthalen‐2‐ol ( 1 ) with arenecarboxaldehydes or alkanals 2 in the presence of HClO4?SiO2 as a heterogeneous catalyst was achieved (Table 1), and this reaction was extended to the preparation of N‐[(2‐hydroxynaphthalen‐1‐yl)methyl]amides 5 by a three‐component reaction with urea ( 4a ) or an amide 4b – d as a third reactant (Table 2).  相似文献   

13.
The (4E)‐N‐(4‐chlorophenyl)‐5‐(3‐chlorophenyl)‐2‐diazo‐3‐oxopent‐4‐enoic acid amides 5a˜j were synthesized with N‐(4‐chlorophenyl)‐2‐diazo‐3‐oxobutyramide 4 from p‐chloroaniline and various arylaldehydes. The yielded products 5a˜j were investigated with NMR, MS, IR, and X‐ray crystallographic techniques.  相似文献   

14.
A concise and efficient route for the synthesis of new 2‐aroylimino‐3‐aryl‐4‐methyl‐5‐acetyl‐1,3‐thiazolines in good to excellent yields is described. This involves the one‐pot, four‐component reaction of suitable aroyl chlorides, potassium thiocyanate, anilines, and 3‐chloropentane‐2,4‐dione in the presence of N‐methylimidazole.  相似文献   

15.
The formation of a C‐N bond via the cross‐couplings of aryl iodides with azoles, aryl amine, and amides can be successfully achieved in decent yield by the utilization of both [Cu 8(H){S2P(OiPr)2}6]+ and [Cu8{S2P(OEt)2}6]2+ as the pre‐catalysts.  相似文献   

16.
Readily accessible dibenzothiophene sulfoximine is an NH3 surrogate allowing the preparation of free anilines by copper‐catalyzed cross‐coupling reactions with aryl iodides or amides followed by radical S−N bond cleavage. The one‐pot/two‐step reactions sequence leads to the aminated products in good yields.  相似文献   

17.
Transformation of N‐alkylated anilines to N‐aryloxamates was studied using ethyl 2‐diazoacetoacetate as an alkylating agent and dirhodium tetraacetate (Rh2(OAc)4) as the catalyst. The general applicability of the reaction as a synthetic method for N‐aryloxamates was studied with a number of substituted N‐alkylated anilines. The results revealed that the oxamate was formed by a radical reaction with molecular O2 and Rh2(OAc)4 as initiator.  相似文献   

18.
The reaction of N,N′‐diarylselenoureas 16 with phenacyl bromide in EtOH under reflux, followed by treatment with NH3, gave N,3‐diaryl‐4‐phenyl‐1,3‐selenazol‐2(3H)‐imines 13 in high yields (Scheme 2). A reaction mechanism via formation of the corresponding Se‐(benzoylmethyl)isoselenoureas 18 and subsequent cyclocondensation is proposed (Scheme 3). The N,N′‐diarylselenoureas 16 were conveniently prepared by the reaction of aryl isoselenocyanates 15 with 4‐substituted anilines. The structures of 13a and 13c were established by X‐ray crystallography.  相似文献   

19.
A general method for the synthesis of so far unknown nonsymmetrically substituted N‐aryl‐N′‐aryl′‐4,4′‐bipyridinium salts is presented (Scheme 1). The common intermediate in all procedures is N‐(2,4‐dinitrophenyl)‐4,4′‐bipyridinium hexafluorophosphate ( 1 ⋅ ). For the synthesis of nonsymmetric arylviologens, 1 ⋅ was arenamine‐exchanged by the Zincke reaction, and then activated at the second bipyridine N‐atom with 2,4‐dinitrophenyl 4‐methylbenzenesulfonate. The detailed preparation of the six N‐aryl‐N′‐aryl′‐viologens 21 – 26 is discussed (Scheme 2). The generality of the procedure is further exemplified by the synthesis of two nonsymmetrically substituted N‐aryl‐N′‐benzyl‐ (see 11 and 12 ), and seven N‐aryl‐N′‐alkyl‐4,4′‐bipyridinium salts (see 28 – 34 ) including substituents with metal oxide anchoring and redox tuning properties. The need for these compounds and their usage as electrochromic materials, in dendrimer synthesis, in molecular electronics, and in tunable‐redox mediators is briefly discussed. The latter adjustable property is demonstrated by the reduction potential measured by cyclic voltammetry on selected compounds (Table).  相似文献   

20.
A series of 2‐substituted benzimidazoles, benzoxazoles were synthesized by the condensation reactions of 1‐aryl‐4‐carboxy‐2‐pyrrolidinones and aromatic ortho‐diamines or ortho‐aminophenol. Alkylation of benzimidazoles with iodoalkanes led to 1‐aryl‐4‐(1‐alkyl‐1H‐benzimidazol‐2‐yl)‐2‐pyrrolidin‐ ones or 1,3‐dialkylbenzimidazolium iodides. N‐Subs‐ tituted γ‐amino acids were prepared by the hydrolysis of 1‐aryl‐4‐(1H‐benzimidazol‐2‐yl)‐2‐pyrrolidinones in sodium hydroxide solution, followed by treatment with acetic acid. The structure of the synthesized pro‐ ducts was investigated using IR and 1H, 13C NMR spectra, MM2 molecular mechanics, and AM1 semi‐ empirical quantum mechanical methods. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:47–56, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20171  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号