首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We perform experiments on two different dense colloidal suspensions with confocal microscopy to probe the relationship between local structure and dynamics near the glass transition. We calculate the Voronoi volume for our particles and show that this quantity is not a universal probe of glassy structure for all colloidal suspensions. We correlate the Voronoi volume to displacement and find that these quantities are only weakly correlated. We observe qualitatively similar results in a simulation of a polymer melt. These results suggest that the Voronoi volume does not predict dynamical behavior in experimental colloidal suspensions; a purely structural approach based on local single particle volume likely cannot describe the colloidal glass transition.  相似文献   

2.
The potential energy landscape (PEL) of binary Lennard-Jones (BLJ) mixtures exhibits local minima, or inherent structures (IS), which are organized into metabasins (MBs). We study the particle rearrangements related to transitions between both successive IS and successive MB for a small 80:20 BLJ system near the mode-coupling temperature TMCT. The analysis includes the displacements of individual particles, the localization of the rearrangements, and the relevance of string-like motion. We find that the particle rearrangements during IS and MB transitions do not change significantly at TMCT. In particular, an onset of single particle hopping on the length scale of the interparticle distance is not observed. Further, it is demonstrated that IS and MB dynamics are spatially heterogeneous and facilitated by string-like motion. To investigate the mechanism of string-like motion, we follow the particle rearrangements during suitable sequences of IS transitions. We find that most strings observed after a series of transitions do not move coherently during a single transition, but subunits of different sizes are active at different times. Several findings suggest that, though string-like motion is of comparable relevance when the system explores a MB and when it moves from one MB to another, the occurrence of a successful string enables the system to exit a MB. Moreover, we show that the particle rearrangements during two consecutive MB transitions are basically uncorrelated. In particular, different groups of particles are highly mobile. We further find the positions of strings during successive MB transitions weakly but positively correlated, supporting the idea of dynamic facilitation. Finally, the relation between the features of the potential energy landscape and the relaxation processes in supercooled liquids is discussed.  相似文献   

3.
Electrofreezing of confined water   总被引:1,自引:0,他引:1  
We report results from molecular dynamics simulations of the freezing transition of TIP5P water molecules confined between two parallel plates under the influence of a homogeneous external electric field, with magnitude of 5 V/nm, along the lateral direction. For water confined to a thickness of a trilayer we find two different phases of ice at a temperature of T=280 K. The transformation between the two, proton-ordered, ice phases is found to be a strong first-order transition. The low-density ice phase is built from hexagonal rings parallel to the confining walls and corresponds to the structure of cubic ice. The high-density ice phase has an in-plane rhombic symmetry of the oxygen atoms and larger distortion of hydrogen bond angles. The short-range order of the two ice phases is the same as the local structure of the two bilayer phases of liquid water found recently in the absence of an electric field [J. Chem. Phys. 119, 1694 (2003)]. These high- and low-density phases of water differ in local ordering at the level of the second shell of nearest neighbors. The results reported in this paper, show a close similarity between the local structure of the liquid phase and the short-range order of the corresponding solid phase. This similarity might be enhanced in water due to the deep attractive well characterizing hydrogen bond interactions. We also investigate the low-density ice phase confined to a thickness of 4, 5, and 8 molecular layers under the influence of an electric field at T=300 K. In general, we find that the degree of ordering decreases as the distance between the two confining walls increases.  相似文献   

4.
We study a binary Lennard-Jones system below the glass transition with molecular dynamics simulations. To investigate the dynamics we focus on events (jumps) where a particle escapes the cage formed by its neighbors. Using single particle trajectories we define a jump by comparing for each particle its fluctuations with its changes in average position. We find two kinds of jumps: "reversible jumps," where a particle jumps back and forth between two or more average positions, and "irreversible jumps," where a particle does not return to any of its former average positions, i.e., successfully escapes its cage. For all investigated temperatures both kinds of particles jump and both irreversible and reversible jumps occur. With increasing temperature, relaxation is enhanced by an increasing number of jumps and growing jump lengths in position and potential energy. However, the waiting time between two successive jumps is independent of temperature. This temperature independence might be due to aging, which is present in our system. We therefore also present a comparison of simulation data with three different histories. The ratio of irreversible to reversible jumps is also increasing with increasing temperature, which we interpret as a consequence of the increased likelihood of changes in the cages, i.e., a blocking of the "entrance" back into the previous cage. In accordance with this interpretation, the fluctuations both in position and energy are increasing with increasing temperature. A comparison of the fluctuations of jumping particles and nonjumping particles indicates that jumping particles are more mobile even when not jumping. The jumps in energy normalized by their fluctuations are decreasing with increasing temperature, which is consistent with relaxation being increasingly driven by thermal fluctuations. In accordance with subdiffusive behavior are the distributions of waiting times and jump lengths in position.  相似文献   

5.
Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the mixing effects lead to these features and whether these features are universal for particles with anisotropic geometries remains unclear. Here, we employ event-driven molecular dynamics simulation to investigate the dynamical and structural properties of binary two-dimensional hard-ellipse mixtures. We find that the relaxation dynamics for translational degrees of freedom exhibit equivalent trends as those observed in binary hard-spherical mixtures. However, the glass transition densities for translational and rotational degrees of freedom present different dependencies on size disparity and composition. Furthermore, we propose a mechanism based on structural properties that explain the observed mixing effects and decoupling behavior between translational and rotational motions in binary hard-ellipse systems.  相似文献   

6.
The structure of water clusters that have absorbed ethane molecules is studied by the molecular dynamics method. Structural analysis is performed by the construction of Voronoi polyheda for oxygen atoms and hybrid polyheda whose centers coincide with the centers of oxygen atoms and the faces are formed according to the positions of hydrogen atoms. The (H2O)20 cluster can retain no more than four ethane molecules remaining at the same time stable. When a water cluster adds more than four ethane molecules, the volumes of Voronoi polyheda acquire values close to the volume per molecule in the bulk liquid water. As the number of ethane molecules in a water cluster increases, the number of hydrogen atoms adjacent to oxygen, as well as the average number of units in cyclic formations composed of hydrogen atoms, also increases. In this case, the number of H-O-H angles formed by the nearest geometric neighbors close to 89° becomes dominant. The coefficient of nonsphericity reflecting the local arrangement of hydrogen atoms around the oxygen atoms decreases as the C2H6 molecules are added to water cluster and approaches to the value of this coefficient for the rhombic dodecahedron in the case of adsorption of six ethane molecules.  相似文献   

7.
A series of simulations of the crystallization and vitrification processes for metal Cu were carried out by means of the molecular dynamics technique. The radial distribution function, common neighbors, internal energy and volume of the system were recorded during the processes. The atomic internal energy, atomic Voronoi volume and atomic stress field of the relax system were analyzed at zero temperature. The interaction between atoms in the system is described using the embedded atom potential as proposed by Mishin. The simulation results show that crystalline and non-crystalline phases form at lower and higher cooling rates respectively. In comparison to nanocrystals, it is found that metallic glass has higher internal energy and larger volume. The intrinsic stress field is induced by distortion of the lattice.  相似文献   

8.
Anisotropic colloidal particles consisting of different compositions and geometry are useful for various applications. These include optical biosensing, antireflective coatings and electronic displays. In this work we demonstrate a simple and cost-effective method for fabricating anisotropic colloidal particles bearing a snowman-like shape. This is achieved by first settling the positively-charged polystyrene latex (PSL) colloids and negatively-charged silica colloids in deionized water onto a glass substrate, forming heterodoublets. The temperature is then raised above the glass transition temperature of the polymer. As a result, the silica particle spontaneously rises to the top of the PSL particle forming a snowman like structure. We have extended this method to different sizes and shown that the structure of the hybrid particles can be tuned by adjusting the size ratio between the silica and the PSL colloids. The surface coverage of the PSL, and hence of the snowman particles, on the glass substrate can also be varied by changing the ionic strength of the solution during the adhesion of PSL to the glass.  相似文献   

9.
Collective behaviours of active particle systems have gained great research attentions in recent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of active and passive Brownian particles. The starting point is an effective Smoluchowski equation, which governs the dynamics of the probability distribution function in the position phase space. With the assumption of the existence of a nonequilibrium steady state, we are able to obtain dynamic equations for the intermediate scattering functions (ISFs), wherein an irreducible memory function is introduced which in turn can be written as functions of the ISFs based on standard mode-coupling approximations. The effect of particle activity is included through an effective diffusion coefficient which can be obtained via short time simulations. By calculating the long-time limit of the ISF, the Debye-Waller (DW) factor, one can determine the critical packing fraction ηc of glass transition. We find that for active-passive (AP) mixtures with the same particle sizes, ηc increases as the partial fraction of active particle xA increases, which is in agreement with previous simulation works. For system with different active/passive particle sizes, we find an interesting reentrance behaviour of glass transition, i.e., ηc shows a non-monotonic dependence on xA. In addition, such a reentrance behaviour would disappear if the particle activity is large enough. Our results thus provide a useful theoretical scheme to study glass transition behaviour of active-passive mixture systems in a promising way.  相似文献   

10.
The thermal rotation of iron nanoparticles dispersed in cyclohexane was studied by measuring the dynamic magnetic susceptibility above and below the freezing point of the solvent. Above the freezing point, the orientation of the magnetic dipoles changes mainly by reorientation of the entire particle. Below the freezing point, complete arrest of particle motion was expected, such that the magnetic dipoles would only be able to reorient themselves inside the nanoparticles (Neel relaxation). However, we find that thermal motion continues well below the temperature at which the bulk of the solvent is frozen. We ascribe this to local lowering of the freezing point, due to the presence of polymers in the close vicinity of the colloids. Furthermore, because strong dipole-dipole interactions result in the formation of dipolar chains, we have systematically studied the effect of particle size on dynamics in a frozen solvent. For the larger particles, our data indicate that local wiggling of the individual particles in a chain may become the dominating mode of thermal motion.  相似文献   

11.
《Liquid crystals》1997,23(2):205-212
We present the results of molecular dynamics simulations of the Gay-Berne model of liquid crystals, supercooled from the nematic phase at constant pressure. We find a glass transition to a metastable phase with nematic order and frozen translational and orientational degrees of freedom. For fast quench rates the local structure is nematic-like, while for slower quench rates smectic order is present as well.  相似文献   

12.
The effect of solid content and colloidal interactions on the structure of forming networks of colloidal particles is studied by Brownian dynamics simulation. The different situations are compared in terms of the pair distribution function and the distribution of nearest neighbors around each particle. The results indicate that, in fast coagulation, the higher solid contents lead to a freezing-in of the liquid structure. Nevertheless, this effect can be reduced substantially by the introduction of a shallow secondary minimum and an energy barrier in the interaction potential. However, the structures resulting from such slow coagulation show a substantial degree of porosity, larger than those produced at the same solid content but by fast coagulation. It is also shown how the porosity (defined on a few particle diameters) is reflected in the distribution of nearest neighbors around the center particle, i.e., the very local conformation in the particle network. Fractal analysis shows that, at the relatively high volume fractions considered in this study, no intermediate fractal regime exists. Copyright 2000 Academic Press.  相似文献   

13.
A polymer-diluent model exhibiting antiplasticization has been developed and characterized by molecular dynamics simulations. Antiplasticizer molecules are shown to decrease the glass transition temperature Tg but to increase the elastic moduli of the polymeric material in the low-temperature glass state. Moreover, the addition of antiplasticizing particles renders the polymer melt a stronger glass-forming material as determined by changes in the characteristic temperatures of glass formation, the fragility parameter D from fits to the Vogel-Folcher-Tamman-Hesse equation, and through the observation of the temperature dependence of the size of cooperatively rearranging regions (strings) in each system. The length of the strings exhibits a weaker temperature dependence in the antiplasticized glass-forming system than in the more fragile pure polymer, consistent with the Adam-Gibbs model of glass formation. Unexpectedly, the strings become increasingly concentrated in the antiplasticizer particles upon cooling. Finally, we discuss several structural indicators of cooperative dynamics, and find that the dynamic propensity (local Debye-Waller factor p) does seem to provide a strong correlation with local molecular displacements at long times. The authors also consider maps of the propensity, and find that the antiplasticized system exhibits larger fluctuations over smaller length scales compared to the pure polymer.  相似文献   

14.
We numerically study a simple model for thermoreversible colloidal gelation in which particles can form reversible bonds with a predefined maximum number of neighbors. We focus on three and four maximally coordinated particles, since in these two cases the low valency makes it possible to probe, in equilibrium, slow dynamics down to very low temperatures T. By studying a large region of T and packing fraction phi we are able to estimate both the location of the liquid-gas phase separation spinodal and the locus of dynamic arrest, where the system is trapped in a disordered nonergodic state. We find that there are two distinct arrest lines for the system: a glass line at high packing fraction, and a gel line at low phi and T. The former is rather vertical (phi controlled), while the latter is rather horizontal (T controlled) in the phi-T plane. Dynamics on approaching the glass line along isotherms exhibit a power-law dependence on phi, while dynamics along isochores follow an activated (Arrhenius) dependence. The gel has clearly distinct properties from those of both a repulsive and an attractive glass. A gel to glass crossover occurs in a fairly narrow range in phi along low-T isotherms, seen most strikingly in the behavior of the nonergodicity factor. Interestingly, we detect the presence of anomalous dynamics, such as subdiffusive behavior for the mean squared displacement and logarithmic decay for the density correlation functions in the region where the gel dynamics interferes with the glass dynamics.  相似文献   

15.
Within the overall understanding of the glass transition, the relationship between microscopic dynamics and fragility is still to be clarified. Decalin is an organic glass former, for which a cis/trans mixture exhibits the highest known degree of fragility in a molecular system. It is therefore an ideal system for the investigation of microscopic dynamics in fragile systems. In the present study, the microscopic dynamics of pure cis-decalin has been measured by inelastic and quasi-elastic incoherent neutron scattering, giving the single particle self-correlation function. The fast relaxation dynamics and low-frequency vibrational modes are reported here. Both in the glass and in the crystal the vibrations show strong anharmonic behavior. In the glass phase, the short time microscopic dynamics evolve rapidly with temperature, however do not exhibit any significant change around the glass transition temperature T(g). The elastic intensity provides a measure of the mean square displacements which are comparable to those measured in other fragile glass formers, in particular, the archetypical fragile glass former orthoterphenyl. It appears that the microscopic relaxation gets unfrozen, relative to T(g), at much lower temperature than in other fragile systems.  相似文献   

16.
We have performed molecular dynamics simulations of glassy trehalose with various amounts of glycerol in order to explore the tendency for glycerol to antiplasticize the glass. We find that below a temperature of 300 K, the average density of the system containing 5%(wt) glycerol is larger than that of the pure trehalose system; the glass transition temperature is decreased, and the elastic constants are essentially unchanged. Taken together, these phenomena are indicative of mild antiplasticization, a type of behavior generally observed in polymeric systems. We have calculated the local elastic constants in our glassy materials and, consistent with previous simulations on a coarse-grained polymer, we find evidence of domains having negative elastic moduli. We have explored the ability of various measures of the Debye-Waller factor u(2) to predict the stiffness of our systems in terms of their elastic constants. We find that u(2) is indeed correlated with the behavior of the bulk elastic constants. On a local level, a correlation exists between the local moduli and u(2); however, that correlation is not strong enough to arrive at conclusive statements about the local elastic properties.  相似文献   

17.
We present a numerical study of the statistical properties of the potential energy landscape of a simple model for strong network-forming liquids. The model is a system of spherical particles interacting through a square-well potential, with an additional constraint that limits the maximum number of bonds Nmax per particle. Extensive simulations have been carried out as a function of temperature, packing fraction, and Nmax. The dynamics of this model are characterized by Arrhenius temperature dependence of the transport coefficients and by nearly exponential relaxation of dynamic correlators, i.e., features defining strong glass-forming liquids. This model has two important features: (i) Landscape basins can be associated with bonding patterns. (ii) The configurational volume of the basin can be evaluated in a formally exact way, and numerically with an arbitrary precision. These features allow us to evaluate the number of different topologies the bonding pattern can adopt. We find that the number of fully bonded configurations, i.e., configurations in which all particles are bonded to Nmax neighbors, is extensive, suggesting that the configurational entropy of the low temperature fluid is finite. We also evaluate the energy dependence of the configurational entropy close to the fully bonded state and show that it follows a logarithmic functional form, different from the quadratic dependence characterizing fragile liquids. We suggest that the presence of a discrete energy scale, provided by the particle bonds, and the intrinsic degeneracy of fully bonded disordered networks differentiates strong from fragile behavior.  相似文献   

18.
With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization.  相似文献   

19.
分子动态模拟研究聚丙烯单链的玻璃化转变   总被引:4,自引:0,他引:4  
用分子动态模拟法对单链高分子固体微粒的玻璃化转变与主链骨架键的构象态跃迁进行了模拟研究,发展了一种表征单链高分子固体微粒玻璃化转变过程的新方法.  相似文献   

20.
Using molecular dynamics simulation, we investigate the structural disorder in crystal, polycrystal, and glass in a Lennard-Jones binary mixture composed of N(1) + N(2) = 4096 particles at a low temperature in three dimensions. The size ratio σ(2)/σ(1) between the large and small particles is either 1.2 or 1.4. The crossovers among these states occur, as the composition of the large particles c = N(2)/(N(1) + N(2)) is varied. We define a disorder variable D(j) for each particle j in terms of local bond order parameters based on spherical harmonics (Steinhardt order parameters). Stacking faults and grain boundaries in fcc polycrystal and mesoscopic structural heterogeneity in glass are then visualized. At small c, disturbances of large particles is stronger for larger σ(2)/σ(1). At large c, the transition between glass and polycrystal occurs nearly discontinuously at c = c(c) ~ 0.8. At σ(2)/σ(1) = 1.4, microphase separation occurs in polycrystal states with c > c(c), where fcc crystal grains comprising the large particles are enclosed by amorphous layers composed of the two particle species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号