首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study density functional theory (DFT) calculations at B3LYP/6-31G(d), B3LYP/6-31+G(d) and B3LYP/6-311+G(2df,2p) levels for geometry optimization and total energy calculation were applied for investigation of the important energy-minimum conformations and transition-state of 1,2-, 1,3-, and 1,4-dithiepanes. Moreover, ab initio calculations at HF/6-31G(d) level of theory for geometry optimization and MP2/6-311G(d)//HF/ 6-31G(d) level for a single-point total energy calculation were reported for different conformers. The obtained results reveal that, the twist-chair conformer is a global minimum for all of these compounds. Also, two local minimum were found in each case, which are twisted-chair and twisted-boat conformers. The boat and chair geometries are transition states. The minimum energy conformation of 1,2-dithiepane is more stable than the lowest energy forms of 1,3-dithiepane and 1,4-dithiepane. Furthermore, the anomeric effect was investigated for 1,3-dithiepane by the natural bond orbital method. The computational results of this study shows that all conformers of 1,3-dithiepane have a hypercojugation system. Finally, the 13C NMR chemical shifts for the conformers of 1,4-dithiepane were calculated, which have good correlation with their experimental values.  相似文献   

2.
Ab initio molecular orbital theory with the 6-31G(d), 6-31G(d,p), 6-31+G(d), 6-31+G(d,p), 6-31+G(2d,p), 6-311G(d), 6-311G(d,p), and 6-311+G(2d,p) basis sets and density functional theory (BLYP, B3LYP, B3P86, B3PW91) have been used to locate transition states involved in the conformational interconversions of 1,4-dithiacyclohexane (1,4-dithiane) and to calculate the geometry optimized structures, relative energies, enthalpies, entropies, and free energies of the chair and twist conformers. In the chair and 1,4-twist conformers the C-Hax and C-Heq bond lengths are equal at each carbon, which suggest an absence of stereoelectronic hyperconjugative interactions involving carbon-hydrogen bonds. The 1,4-boat transition state structure was 9.53 to 10.5 kcal/mol higher in energy than the chair conformer and 4.75 to 5.82 kcal/mol higher in energy than the 1,4-twist conformer. Intrinsic reaction coordinate (IRC) calculations showed that the 1,4-boat transition state structure was the energy maximum in the interconversion of the enantiomers of the 1,4-twist conformer. The energy difference between the chair conformer and the 1,4-twist conformer was 4.85 kcal/mol and the chair-1,4-twist free energy difference (deltaG degrees (c-t)) was 4.93 kcal/mol at 298.15 K. Intrinsic reaction coordinate (IRC) calculations connected the transition state between the chair conformer and the 1,4-twist conformer. This transition state is 11.7 kcal/mol higher in energy than the chair conformer. The effects of basis sets on the 1,4-dithiane calculations and the relative energies of saturated and unsaturated six-membered dithianes and dioxanes are also discussed.  相似文献   

3.
Ab initio molecular orbital theory with the LANL2DZ, 3-21G, 6-31G(d), 6-31+G(d), 6-31+G(d,p), 6-311+G(d,p),6-31G(2d), 6-31G(3d), and 6-311G(d,p) basis sets and density functional theory (B3P86, B3LYP, B3PW91) have been used to calculate the structures, relative energies, enthalpies, entropies, and free energies of the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran (tetrahydrothiopyran, thiacyclohexane, thiane, pentamethylene sulfide). All levels of theory calculated similar energy values and the effect of basis sets on the calculated energies was small. The chair conformer of tetrahydro-2H-thiopyran was 5.27 kcal/mol more stable than the 1,4-twist conformer, which was slightly more stable (0.81 kcal/mol) than the 2,5-twist conformer. The chair–1,4-twist and chair–2,5-twist free energy differences ( G°c – t) were 5.44 and 5.71 kcal/mol, respectively. Intrinsic reaction coordinate [IRC, minimum-energy path (MEP)] calculations connected the transition state between the chair and the 2,5-twist conformers. This transition state is 9.73 kcal/mol higher in energy than the chair conformer and the energy differences between the chair and the 1,4-boat and 2,5-boat transition states were 8.07 and 6.38 kcal/mol, respectively. Stereoelectronic hyperconjugative interactions were observed in the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran. The stereoelectronic hyperconjugative effects in the chair conformer of tetrahydro-2H-thiopyran have been compared to those in the respective chair conformers of tetrahydro-2H-pyran, tetrahydro-2H-selenane, and tetrahydro-2H-tellurane.  相似文献   

4.
The 1H and 13C-NMR of 2,4,6-trimethoxyphenol-1-O-D-glucopyranoside(Compound 1) isolated from Celastrus angulatus (Celastraceae) was calculated theoretically at the both levels HF/6-311+G(2d,p)//B3LYP/6-31G(d) and HF/6-311+G(2d,p)//B3LYP/6-31G(d,p) using the GIAO (gauge-independent atomic orbital) method. Statistical error analysis for theoretically predicted δH and δC values versus those experimentally observed for compound 1 was discussed. The results show that the theoretically predicted δH and δC values of β conformer of compound 1 are more close to the experimentally observed values than α conformer, and the β conformer of compound 1 is more stable than α conformer according to molecular energy theoretically calculated. So compound 1 is assigned to be 2,4,6-trimethoxyphenol-1-O-β-D-glucopyranoside, which is in good consistence with the conclusion deduced by the anomeric proton signal (δH=4.80, J=7.3 Hz) experimentally observed.  相似文献   

5.
The molecular structure and conformational stability of CH2CHCH2X (X=F, Cl and Br) molecules were studied using ab initio and density functional theory (DFT) methods. The molecular geometries of 3-fluoropropene were optimized employing BLYP and B3LYP levels of theory of DFT method implementing 6-311+G(d,p) basis set. The MP2/6-31G*, BLYP and B3LYP levels of theory of ab initio and DFT methods were used to optimize the 3-chloropropene and 3-bromopropene molecules. The structural and physical parameters of the molecules are discussed with the available experimental values. The rotational potential energy surface of the above molecules were obtained at MP2/6-31G* and B3LYP/6-311+G(d,p) levels of theory. The Fourier decomposition of the rotational potentials were analyzed. The HF/6-31G* and MP2/6-31G* levels of theory have predicted the cis conformer as the minimum energy structure for 3-fluoropropene, which is in agreement with the experimental values, whereas the BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory reverses the order of conformation. The ΔE values calculated for 3-chloropropene at MP2/6-31G*, BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory show that the gauche form is more stable than the cis form, which is in agreement with the experimental value. The same levels of theory have also predicted that the gauche form is stable than cis for 3-bromopropene molecule. The maximum hardness principle has been able to predict the stable conformer of 3-fluoropropene at HF/6-31G* level of theory, but the same level of theory reverses the conformational stability of 3-chloropropene and 3-bromopropene molecules and MP2/6-31G* level of theory predicted the stable conformer correctly.  相似文献   

6.
The molecular structure of 2,2,4,4,6,6-hexamethyl-1,3,5-trimethylenecyclohexane has been determined in the gas phase at a nozzle tip temperature of 340 K. The electron diffraction data were found to be consistent with a model where the cyclohexane ring adopts a distorted twist-boat conformation. The averaged geometrical parameters (r(g) and 90 degree angle (alpha)) obtained from least squares analysis are r(C=C) = 1.346(4) A, r(C-C)(ring) = 1.537(1) A, r(C-C)(Me) = 1.543(1) A, 90 degree angle C(6)C(1)C(2) = 117.5(11) degrees, 90 degree angle C(1)C(2)C(3) = 113.1(12) degrees, and 90 degree angle MeCMe = 108.2(13) degrees. The experimental results are consistent with the results from HF/6-311G(d) and MP2/6-311G(d) calculations where the distorted twist-boat form is found to be lower in energy than the chair form by 9.85 and 10.7 kcal/mol, respectively.  相似文献   

7.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

8.
Ion/molecule reactions between O=P(OCH(3))(2)(+) phosphonium ions and six aromatic hydrocarbons (benzene, toluene, 1,2,4-trimethylbenzene, naphthalene, acenaphthylene and fluorene) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2)(+) phosphonium ions, formed by electron impact from neutral trimethyl phosphite, were found to react with aromatic hydrocarbons (ArHs) to give (i) an adduct [ArH, O=P(OCH(3))(2)](+) and (ii) for ArHs which have an ionization energy below or equal to 8.14 eV, a radical cation ArH(+ *) by charge transfer reaction. Collision-induced dissociation experiments, which produce fragment ions other than the O=P(OCH(3))(2)(+) ions, indicate that the adduct ions are covalent species. Isotope-labeled ArHs were used to elucidate fragmentation mechanisms. The charge transfer reactions were investigated using density functional theory at the B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G(d,p) level of theory. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2)(+) and benzene is described.  相似文献   

9.
[reaction: see text] Neutral homoaromaticity has been evaluated in heterocyclic systems related to the bicyclo[3.2.1]octane skeleton with replacement of CH(2) at C-2 in bicyclo[3.2.1]octa-3,6-diene with X = BH, AlH, Be, Mg, O, S, PH, NH (12); replacement of CH at C-3 in bicyclo[3.2.1]octa-3,6-dien-2-yl anion with PH, S, NH, O (13); and replacement at C-2 and C-3 with N and O (14). Stabilization energies (SE) are evaluated using density functional theory and homodesmotic equations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level for series 12-14. Stabilization energies are compared with diamagnetic susceptibility exaltations, Lambda, CSGT-B3LYP/6-31G(d)//B3LYP/6-31G(d), and nucleus-independent chemical shifts (NICS), GIAO-B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d). Analysis of frontier orbitals and geometries, B3LYP/6-31G(d)//B3LYP/6-31G(d), and proton affinities of 2-azabicyclo[3.2.1]octa-3,6-diene, pyrrole, and related model systems, B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d), provide complementary evidence supporting the division of the substrates evaluated into antihomoaromatic (12, X = BH, AlH, and Be), nonhomoaromatic (12, X = O, S, NH, PH), and homoaromatic (13, X = S, PH, NH, O and 14 X = ON), with 12 (X = Mg) appearing as transitional between anti- and nonhomoaromatic.  相似文献   

10.
Becke 3-Lee–Yang–Parr density functional theory (DFT/B3LYP) using 6-31G(d) and 6-311G(d) basis sets and the scaled quantum mechanics (SQM) force field method are used to study molecular conformations and vibrational spectra of a model compound of vitamin K (VK). In this molecule, there are six conformers on the torsional potential energy map of the dihedral angles C8C14C15C16 () and C7C8C14C15 (β). It is shown that the VK_1 conformer ( = 237.7° and β = 274.2°) is the most stable form. For this lowest energy conformer, the harmonic force fields calculated by B3LYP/6-311G(d) and B3LYP/6-31G(d) methods are scaled with one scale factor of 0.9623 and a set of different scale factors transferred from the previous studies for the other similar molecules, respectively. The vibrational frequencies, IR intensities, and Raman activities are obtained for the lowest energy conformer. On the basis of B3LYP calculations, the normal mode analysis is performed to assign the vibrational fundamental frequencies according to the potential energy distributions. The computational frequencies are in good agreement with the observed results.  相似文献   

11.
[reaction: see text] Low-temperature 13C NMR spectra of cis-1,4-di-tert-butylcyclohexane (1) showed signals for the twist-boat (1a) and chair (1b) conformations. 13C NMR signals were assigned to specific carbons based on the different populations, different symmetries (time-averaged C(2v) for 1a and time-averaged C(s) for 1b), and calculated chemical shifts (GIAO, HF/6-311+G*). In addition to slow ring inversion and interconversion of the chair and twist-boat conformations, slow rotation of the tert-butyl groups was found. Most of the expected 13C peaks were observed. Free-energy barriers of 6.83 and 6.35 kcal/mol were found for interconversion of 1a (major) and 1b (minor) at -148.1 degrees C. Conformational space was searched with Allinger's MM3 and MM4 programs, and free energies were obtained for several low-energy conformations 1a-c. Calculations were repeated with ab initio methods up to the HF/6-311+G* level. Molecular symmetries, relative free energies, relative enthalpies and entropies, frequencies, and NMR chemical shifts were obtained. A boat conformation (1d; C(2v) symmetry) was generated and optimized as a transition state by ab initio, MM3, and MM4 calculations.  相似文献   

12.
The conformations of dodecamethylcyclohexasilane Si6Me12 and undecamethylcyclohexasilane Si6Me11H have been investigated by ab initio calculations employing the B3LYP density functional with a 6-31+G(d) basis set. Local minima as well as transition structures were calculated with imposed symmetry constraints. For Si6Me12, three unique minima, which correspond to the chair, twist and boat conformations were located with relative zero-point-vibration-corrected energies of 0.0, 7.8 and 11.4 kJ mol(-1). A half-chair conformation with four coplanar silicon atoms connects the chair and twisted minima via an energy barrier of 16.0 and 8.2 kJ mol(-1), respectively. A second transition structure with a barrier of 3.9/0.3 kJ mol(-1) connects the twist with the boat structure. Solution Raman spectra of Si6(CH3)12 and Si6(CD3)12 fully corroborate these results. Below -40 degrees C, the symmetric SiSi ring breathing vibration is a single line, which develops a shoulder (originating from the twist conformer) at longer wavelengths whose intensity increases with increasing temperature. From a Van't Hoff plot, the chair/twist enthalpy difference is 6.6+/-1.5 kJ mol(-1) for Si6(CH3)12 and 6.0+/-1.5 kJ mol(-1) for Si6(CD3)12, which is in reasonable agreement with the ab initio results. Due to the low barrier, the boat conformation cannot be observed, because either the lowest torsional vibration level lies above it or a rapid interconversion between the twist and boat conformations occurs, resulting in averaged Raman spectra. For Si6Me11H, six local minima were located. The chair with the hydrogen atom in the axial position (axial chair) is the global minimum, followed by the equatorial chair (+1.9 kJ mol(-1)) and the three twist conformers (+5.3, +8.0 and +8.1 kJ mol(-1)). The highest local minimum (+11.9 kJ mol(-1)) is a C(s) symmetric boat with the hydrogen atom in the equatorial position. Two possible pathways for the chair-to-chair interconversion with barriers of 13.9 and 14.5 kJ mol(-1) have been investigated. The solution Raman spectra in the SiSi ring breathing region clearly show that below -50 degrees C only the axial and equatorial chairs are present, with an experimental deltaH-value of 0.46 kJ mol(-1). With increasing temperature a shoulder develops which is attributed to the combined twist conformers. The experimental deltaH-value is 6.9 kJ mol(-1), in good agreement with the ab initio results. Due to the low interconversion barriers, the various twist conformers cannot be detected separately.  相似文献   

13.
用 HF自洽场理论和密度泛函理论 (DFT)的 B3LYP方法 ,在 6 31G水平上研究了低聚物 (Cl2AlNH2)n和 (H2AlNH2)n(n=1~ 5)簇的几何构型、电子结构和聚合反应热力学性质 ,比较了两个系列化合物中化学键的强度 .结果表明 ,Cl2AlNH2和 H2AlNH2分子为 C2υ (EC)平面型结构 ,其中 Al- N为由一个σ键和一个π键组成的双键 .(Cl2AlNH2)n和 (H2AlNH2)n(n=1~ 5)分子为 Dnh对称 ,Al- N是典型的σ单键 .低聚物 (Cl2AlNH2)n和 (H2AlNH2)n的稳定性顺序分别为 : 3 > 2 > 4> 5 > 1和 8 > 7 > 9 > 11 > 6.  相似文献   

14.
The molecular structure of fluoromalononitrile was studied by means of gas-phase electron diffraction and quantum mechanical methods using HF/6-31G(d), MP2/6-311++G(2df,2pd) and DFT/B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-311++G(2df,2pd) and B3PW91/6-311++G(2df,2pd). The r(g) and angle(alpha) structural parameters we obtained from the present analysis are: CC=1.487(5) A, CN=1.157(3) A, CF=1.386(5) A, CH=1.096 A (ass.), angleCCC=106.7(1.0) degrees , angleCCF=108.0(0.7) degrees , angleCCN=177.6(2.0) degrees . Uncertainties in parenthesis are 3sigma.  相似文献   

15.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

16.
The geometric structure and conformational properties of 3,3,6,6-tetramethyl-1,2,4,5-tetroxane (diacetone diperoxide) have been studied by gas electron diffraction and quantum chemical calculations (MP2 and B3LYP methods with 6-31G(d,p) and 6-311+G(2df,p) basis sets). The molecule possesses a chair conformation with C2h symmetry and the following geometric parameters for the six-membered ring (rh1 values) have been determined: O-O = 1.463(5) A, C-O = 1.432 (4) A, O-C-O = 108.2(7) degrees, C-O-O = 107.7(4) degrees, phi(C-O-O-C) = 63.7(4) degrees, and phi(O-O-C-O) = -63.9(4) degrees. A small contribution of less than 3.5% of a twist conformer with C2 symmetry cannot be excluded. Quantum chemical calculations predict a contribution between 1 and 2%. Additional calculations for the parent compound 1,2,4,5-tetroxane (diformaldehyde diperoxide) demonstrate that methyl substitution at the carbon atoms has a minor effect on the ring geometry but a strong effect on the conformational properties. Methyl substitution reduces the energy difference between twist and chair conformers by more than 5 kcal/mol.  相似文献   

17.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

18.
Trichloromethanesulfenyl acetate, CCl 3SOC(O)CH 3, belongs to the family of sulfenic esters. This molecule has been characterized by vibrational spectroscopy. The conformational and geometrical properties of this species have been determined by IR and Raman spectroscopy, X-ray diffraction, and quantum chemical calculations. Geometry optimizations of the most stable forms were performed with ab initio (HF, MP2) and density functional theory (B3LYP) methods. According to our data, this compound results in a gauche-syn conformer with C 1 symmetry (gauche orientation around the S-O bond and syn orientation of the CO double bond with respect to the S-O single bond) for the most stable geometry, and trans-syn conformer with C s symmetry (trans orientation around the S-O bond and syn orientation of the CO double bond with respect to the S-O single bond) for the second stable conformer (1.1 and 0.53 kcal/mol higher in energy than the most stable C 1 form according to the matrix FTIR spectroscopy and MP2/6-31G* level of the theory, respectively). The crystalline solid (monoclinic, P2 1/ n, a = 8.0152(17) A, b = 5.7922(13) A, c = 17.429(4) A, alpha = gamma = 90 degrees , beta = 100.341(3) degrees ) consists exclusively of the main form. The geometrical parameters (X-ray diffraction) are d C-Cl = 1.767(19) A, d C-S = 1.797(2) A, d S-O = 1.663(14) A, d CO = 1.189(2) A, d O-C = 1.389(3) A, d C-C = 1.483(3) A, angles Cl-C-Cl = 110.3(11) degrees , Cl-C-S = 111.8(12) degrees , C-S-O = 97.4(8) degrees , S-O-C = 116.7(11) degrees , O-CO = 122.8(19) degrees , OC-C = 127.1(2) degrees , and the main torsion angles are delta(CSOC) = 105.9(15) degrees and delta(SOC(O)) = 7.6(3) degrees . The geometrical data calculated with B3LYP/6-31G++(3df,3pd), B3LYP/6-311G++(3df,3pd), B3LYP/aug-cc-pVTZ, and MP2/6-31G* are in good agreement with diffraction data.  相似文献   

19.
The intrinsic acidity and basicity of a series of beta-chalcogenovinyl(thio)aldehydes HC([double bond]X)[bond]CH[double bond]CH[bond]CYH (X=O, S; Y=Se, Te) were investigated by B3LYP/6-311+G(3df,2p) density functional and G2(MP2) calculations on geometries optimized at the B3LYP/6-31G(d) level for neutral molecules and at the B3LYP/6-31+G(d) level for anions. The results showed that selenovinylaldehyde and selenovinylthioaldehyde should behave as Se bases in the gas phase, because the most stable neutral conformer is stabilized by an X[bond]H...Se (X=O, S) intramolecular hydrogen bond (IHB). In contrast the Te-containing analogues behave as oxygen or sulfur bases, because the most stable conformer is stabilized by typical X...Y[bond]H chalcogen-chalcogen interactions. These compounds have a lower basicity than expected because either chalcogen-chalcogen interactions or IHBs become weaker upon protonation. Similarly, they are also weaker acids than expected because deprotonation results in a significantly destabilized anion. Loss of the proton from the X[bond]H or Y[bond]H groups is a much more favorable than from the C[bond]H groups. Therefore, for Se compounds the deprotonation process results in loss of the X[bond]H...Se (X=O, S) IHBs present in the most stable neutral conformer, while for Te-containing compounds the stabilizing X...Y[bond]H chalcogen-chalcogen interaction present in the most stable neutral conformer becomes repulsive in the corresponding anion.  相似文献   

20.
The relative gas-phase energetics of several low-lying isomers of 1,7-dioxaspiro[5.5]undecane and 1,7,9-trioxadispiro[5.1.5.3]hexadecane have been calculated with second-order Mller-Plesset perturbation theory and basis sets as large as aug-cc-pVQZ. Relative energies in THF, dichloromethane, acetone, and DMSO have been estimated with corrections from polarized continuum model calculations at the B3LYP/6-311+G(d) level. In the most stable conformation of 1,7-dioxaspiro[5.5]undecane, both rings adopt chair conformations, and both oxygens are axially disposed (2A). It is more than 2 kcal mol(-1) more stable than all the other conformers. In agreement with previous work, the "twist-boat" trans isomer (3A) is the most stable isomer of 1,7,9-trioxadispiro[5.1.5.3]hexadecane. However, in contrast to this earlier study, an "all-chair" conformation (3B) is found to be the most stable cis isomer of 1,7,9-trioxadispiro[5.1.5.3]hexadecane (E approximately 0.5 kcal mol(-1) in acetone and DMSO). Gauge-independent atomic orbital computations at the B3LYP/6-311+G(d) level indicate that this is the only cis isomer with (13)C NMR chemical shifts that are qualitatively consistent with the experimental spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号