首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Adams RD  Smith JL 《Inorganic chemistry》2005,44(12):4276-4281
The reaction of Rh(4)(CO)(12) with Ph(3)GeH at 97 degrees C has yielded the first rhodium cluster complexes containing bridging germylene and germylyne ligands: Rh(8)(CO)(12)(mu(4)-GePh)(6), 9, and Rh(3)(CO)(5)(GePh(3))(mu-GePh(2))(3)(mu(3)-GePh)(mu-H), 10. When the reaction is performed under hydrogen, the yield of 9 is increased to 42% and no 10 is formed. Compound 9 contains a cluster of eight rhodium atoms arranged in the form of a distorted cube. There are six mu(4)-GePh groups bridging each face of this distorted cube. Four of the rhodium atoms have two terminal carbonyl ligands, while the remaining four rhodium atoms have only one carbonyl ligand. Compound 10 contains a triangular cluster of three rhodium atoms with one terminal GePh(3) ligand, three bridging GePh(2) ligands, and one triply bridging GePh ligand. There is also one hydrido ligand that is believed to bridge one of the Rh-Ge bonds. Compound 9 reacted with PPhMe(2) at 25 degrees C to give the tetraphosphine derivative Rh(8)(CO)(8)(PPhMe(2))(4)(mu(4)-GePh)(6), 11. The structure of 11 is similar to 9 except that a PPhMe(2) ligand has replaced a carbonyl ligand on each the four Rh(CO)(2) groups. Compound 10 reacted with CO at 68 degrees C to give the complex Rh(3)(CO)(6)(mu-GePh(2))(3)(mu(3)-GePh), 12. Compound 12 is formed by the loss of the hydrido ligand and the terminal GePh(3) ligand from 10 and the addition of one carbonyl ligand. All compounds were fully characterized by IR, NMR, elemental, and single-crystal X-ray diffraction analyses.  相似文献   

2.
The reaction of Ir4(CO)12 with Ph3GeH at 97 degrees C has yielded the new tetrairidium cluster complexes Ir4(CO)7(GePh3)(mu-GePh2)2[mu3-eta3-GePh(C6H4)](mu-H)2 (10) and Ir4(CO)8(GePh3)2(mu-GePh2)4 (11). The structure of 10 consists of a tetrahedral Ir4 cluster with seven terminal CO groups, two bridging GePh2) ligands, an ortho-metallated bridging mu3-eta3-GePh(C6H4) group, a terminal GePh3 ligand, and two bridging hydrido ligands. Compound 11 consists of a planar butterfly arrangement of four iridium atoms with four bridging GePh2 and two terminal GePh3 ligands. The same reaction at 125 degrees C yielded the two new triiridium clusters Ir3(CO)5(GePh3)(mu-GePh2)3(mu3-GePh)(mu-H) (12) and Ir3(CO)6(GePh3)3(mu-GePh2)3 (13). Compound 12 contains a triangular Ir3 cluster with three bridging GePh2), one triply bridging GePh, and one terminal GePh3 ligand. The compound also contains a hydrido ligand that bridges one of the Ir-Ge bonds. Compound 13 contains a triangular Ir3 cluster with three bridging GePh2 and three terminal GePh3 ligands. At 151 degrees C, an additional complex, Ir4H4(CO)4(mu-GePh2)4(mu4-GePh)2 (14), was isolated. Compound 14 consists of an Ir4 square with four bridging GePh2, two quadruply bridging GePh groups, and four terminal hydrido ligands. Compound 12 reacts with CO at 125 degrees C to give the compound Ir3(CO)6(mu-GePh2)3(mu3-GePh) (15). Compound 15 is formed via the loss of the hydrido ligand and the terminal GePh3 ligand and the addition of one carbonyl ligand to 12. All compounds were fully characterized by IR, NMR, single-crystal X-ray diffraction analysis, and elemental analysis.  相似文献   

3.
Three new compounds, Ru4(mu4-GePh)2(mu-GePh2)2(mu-CO)2(CO)8 (11), Ru4(mu4-GePh)2(mu-GePh2)3(mu-CO)(CO)8 (12), and Ru4(mu4-GePh)2(mu-GePh2)4(CO)8 (13), were obtained from the reaction of H(4)Ru(4)(CO)12 with excess Ph(3)GeH in octane (11 and 12) or decane (13) reflux. Compound 11 was converted to compound 13 by reaction with Ph(3)GeH by heating solutions in nonane solvent to reflux. Compounds 11-13 each contain a square-type arrangement of four Ru atoms capped on each side by a quadruply bridging GePh ligand to form an octahedral geometry for the Ru(4)Ge(2) group. Compound 11 also contains two edge-bridging GePh(2) groups on opposite sides of the cluster and two bridging carbonyl ligands. Compound 12 contains three edge-bridging GePh(2) groups and one bridging carbonyl ligand. Compound 13 contains four bridging GePh(2) groups, one on each edge of the Ru4 square. The reaction of H(4)Os(4)(CO)12 with excess Ph(3)GeH in decane at reflux yielded two new tetraosmium cluster complexes, Os4(mu4-GePh)2(mu-GePh2)3(mu-CO)(CO)8 (14) and Os4(mu4-GePh)2(mu-GePh(2))4(CO)8 (15). These compounds are structurally similar to compounds 12 and 13, respectively.  相似文献   

4.
Adams RD  Captain B  Zhu L 《Inorganic chemistry》2005,44(19):6623-6631
Reaction of PtRu5(CO)15(PBut3)(C), 3, with hydrogen at 97 degrees C yielded the new dihydride-containing cluster compound PtRu5(CO)14(PBut3)(mu-H)2(mu6-C), 5. Compound 5 was characterized crystallographically and was shown to contain an octahedral cluster consisting of one platinum and five ruthenium atoms with a carbido ligand in the center. Two hydrido ligands bridge two oppositely positioned PtRu bonds. Compound 5 reacts with Pt(PBut3)2 to yield Pt2Ru5(CO)14(PBut3)2(mu-H)2(mu6-C), 6, a Pt(PBut3) adduct of 5, by adding a Pt(PBut3) group as a bridge across one of the Ru-Ru bonds in the square base of the Ru5 portion of the cluster. Compound 6 is dynamically active on the NMR time scale by a mechanism that appears to involve a shifting of the Pt(PBut3) group from one Ru-Ru bond to another. Two new complexes, PtRu5(CO)13(PBut3)(mu-H)3(GePh3)(mu5-C), 7, and PtRu5(CO)13(PBut3)(mu-H)2(mu-GePh2)(mu6-C), 8, were obtained from the reaction of 5 with HGePh3. The cluster of 7 has an open structure in which the Pt(PBut3) group bridges an edge of the square base of the square pyramidal Ru5 cluster. Compound 7 also has three bridging hydrido ligands and one terminal GePh3 ligand. When heated to 97 degrees C, 7 is slowly converted to 8 by cleavage of a phenyl group from the GePh3 ligand and elimination of benzene by its combination with one of the hydrido ligands. The PtRu5 metal cluster of 8 has a closed octahedral shape with a GePh2 ligand bridging one of the Ru-Ru bonds. Two tin-containing compounds, PtRu5(CO)13(PBut3)(mu-H)3(SnPh3)(mu5-C), 9, and PtRu5(CO)13(PBut3)(mu-H)2(mu-SnPh2)(mu6-C), 10, which are analogous to 7 and 8 were obtained from the reaction of 5 with HSnPh3.  相似文献   

5.
Adams RD  Captain B  Fu W  Smith MD 《Inorganic chemistry》2002,41(21):5593-5601
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)SnH in the presence of UV irradiation has yielded the Ph(3)SnH adduct Ru(5)(CO)(15)(SnPh(3))(mu(5)-C)(mu-H), 3, by SnH bond activation and cleavage of one Ru-Ru bond in the cluster of 1. The reaction of 1 with Ph(3)SnH at 127 degrees C yielded the high nuclearity cluster compound Ru(5)(CO)(10)(SnPh(3))(mu-SnPh(2))(4)(&mu(5)-C)(mu-H), 4, that contains five tin ligands. Four of these are SnPh(2) groups that bridge each edge of the base of the Ru(5) square pyramidal cluster. The reaction of Ph(3)SnH with the benzene-substituted cluster Ru(5)(CO)(12)(C(6)H(6))(mu(5)-C), 2, at 68 degrees C yielded two products: Ru(5)(CO)(11)(SnPh(3))(C(6)H(6))(mu(5)-C)(mu-H), 5, and Ru(5)(CO)(10)(SnPh(3))(2)(C(6)H(6))(mu(5)-C)(mu-H)(2), 6. Both contain square pyramidal Ru(5) clusters with one and two SnPh(3) groups, respectively. At 127 degrees C, the reaction of 2 with an excess of Ph(3)SnH has led to the formation of two new high-nuclearity cluster complexes: Ru(5)(CO)(8)(mu-SnPh(2))(4)(C(6)H(6))(mu(5)-C), 7, and Ru(5)(CO)(7)(mu-SnPh(2))(4)(SnPh(3))(C(6)H(6))(mu-H), 8. Both compounds contain square pyramidal Ru(5) clusters with SnPh(2) groups bridging each edge of the square base. Compound 8 contains a SnPh(3) group analogous to that of compound 4. When treated with CO, compound 8 is converted to 4. When heated to 68 degrees C, compound 5 was converted to the new compound Ru(5)(CO)(11)(C(6)H(6))(mu(4)-SnPh)(mu(3)-CPh), 9, by loss of benzene and the shift of a phenyl group from the tin ligand to the carbido carbon atom to form a triply bridging benzylidyne ligand and a novel quadruply bridging stannylyne ligand.  相似文献   

6.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

7.
The cluster complex Ru(5)(CO)(12)(C(6)H(6))(mu(5)-C), 1, undergoes multiple addition reactions with Ph(3)SnH to yield two new bimetallic cluster complexes: Ru(5)(CO)(8)(mu-SnPh(2))(4)(C(6)H(6))(mu(5)-C), 2, 2% yield, and Ru(5)(CO)(7)(mu-SnPh(2))(4)(SnPh(3))(C(6)H(6))(mu(5)-C)(mu-H), 3, 26% yield, containing four and five tin ligands, respectively. Both compounds consist of a square pyramidal Ru(5) cluster with an interstitial carbido ligand and bridging SnPh(2) groups located across each of the four edges of the base of the Ru(5) square pyramid. Compound 3 contains an additional SnPh(3) group terminally coordinated to one of the ruthenium atoms in the square base.  相似文献   

8.
The reaction of [Ru(3)(CO)(12)] with Ph(3)SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-SnPh(2))(SnPh(3))(2)] which consists of a SnPh(2) stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh(3) ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) A] and very long bonds to the other two [Sn-Ru 3.074(1) A]. The germanium compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-GePh(2))(GePh(3))(2)] was obtained from the reaction of [Ru(3)(CO)(12)] with Ph(3)GeSPh and has a similar structure to that of as evidenced by spectroscopic data. Treatment of [Os(3)(CO)(10)(MeCN)(2)] with Ph(3)SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os(3)(CO)(9)(mu-SPh)(mu(3)-SnPh(2))(MeCN)(eta(1)-C(6)H(5))] . Cluster has a superficially similar planar metal core, but with a different bonding mode with respect to that of . The Ph(2)Sn group is bonded most closely to Os(2) and Os(3) [2.786 and 2.748 A respectively] with a significantly longer bond to Os(1), 2.998 A indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru(3)(CO)(10)(mu-dppm)] with Ph(3)SnSPh afforded [Ru(3)(CO)(6)(mu-dppm)(mu(3)-S)(mu(3)-SPh)(SnPh(3))] . Compound contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph(3)Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand.  相似文献   

9.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(24):6281-6290
The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.  相似文献   

10.
The reaction of Mn(2)(CO)(7)(mu-S(2)), 1, with Pt(PPh(3))(2)(PhC(2)Ph) yielded the new complex, Mn(2)(CO)(6)Pt(PPh(3))(2)(mu(3)-S)(2), 3, by loss of CO and insertion of a Pt(PPh(3))(2) group into the S-S bond of 1. Complex 3 was characterized crystallographically and was found to consist of an open Mn(2)Pt cluster with one Mn-Mn bond, 2.8154(14) A, one Mn-Pt bond, 2.9109(10) A, and two triply bridging sulfido ligands. Compound 3 reacts with CO to form adduct Mn(2)(CO)(6)(mu-CO)Pt(PPh(3))(2)(mu(3)-S)(2), 4. Compound 4 also contains an open Mn(2)Pt cluster with two triply bridging sulfido ligands but has only one metal-metal bond, Mn-Mn = 2.638(2) A. Under nitrogen, compound 4 readily loses CO and reverts back to 3.  相似文献   

11.
The hydride and PhC2H complexes, Ru5(CO)14(mu6-C)[Pt(PBut3)](mu-H)2, 2, and Ru5(CO)13(mu5-C)(PhC2H)[Pt(PBut3)], 3, were obtained from the reactions of Ru5(CO)15(C)[Pt(PBut3)], 1, with hydrogen and PhC2H, respectively. Styrene was formed catalytically when hydrogen and PhC2H were allowed to react with 3 in combination, and the complex Ru5(CO)12(mu5-C)[PtPBut3](PhC2H)(mu-H)2, 4, containing both hydrides and a PhC2H ligand was formed. The catalysis is promoted by the presence of the platinum atom in the complexes.  相似文献   

12.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(21):5525-5529
The reaction of Mn(2)(CO)(7)(mu-S(2)) (2) with SMe(2) yielded the new complexes Mn(2)(CO)(6)(mu-S(2))(mu-SMe(2)) (3) and Mn(4)(CO)(14)(SMe(2))(mu(3)-S(2))(mu(4)-S(2)) (4) in 18 and 41% yields, respectively. The reaction of 2 with the cyclic thioether thietane SCH(2)CH(2)CH(2) yielded the new complexes Mn(2)(CO)(6)(mu-S(2))(mu-SCH(2)CH(2)CH(2)) (5) and Mn(4)(CO)(14)(SCH(2)CH(2)CH(2))(mu(3)-S(2))(mu(4)-S(2)) (6) in 12 and 52% yields, respectively, and the reaction of 2 with 1,4,9-trithiacyclododecane (12S3) yielded Mn(2)(CO)(6)(mu-12S3)(mu-S(2)) (7) and Mn(4)(CO)(14)(12S3)(mu(3)-S(2))(mu(4)-S(2)) (8) in 8 and 24% yields, respectively. Compounds 3 and 5-7 were characterized crystallographically. Compounds 3, 5, and 7 have similar structures in which the thioether ligand has replaced the bridging carbonyl ligand of 2 and its sulfur atom has been inserted into the manganese-manganese bond. The two manganese atoms are not mutually bonded, and two Mn(CO)(3) groups are held together through the bridging disulfido ligand and the bridging sulfur atom of the thioether ligand. Compound 6 contains a Mn(4)(mu(3)-S(2))(mu(4)-S(2)) moiety without metal-metal bonds. On the basis of spectroscopic data, compounds 4 and 8 are believed to have similar structures.  相似文献   

13.
Stepwise bidentate coordination of the novel indolylphosphine ligands HL (1, HL = P(C(6)H(5))(2)(C(9)H(8)N)(diphenyl-2-(3-methylindolyl)phosphine); 2, HL = P(C(6)H(5))(C(9)H(8)N)(2)(phenyldi-2-(3-methylindolyl)phosphine); and 3, HL = P(C(6)H(5))(C(17)H(12)N(2))(di(1H-3-indolyl)methane-(2,12)-phenylphosphine)) to the ruthenium cluster Ru(3)(CO)(12) is demonstrated. Reactions of 1-3 with Ru(3)(CO)(12) led to the formation of Ru(3)(CO)(11)(HL) (4-6), in which HL is mono-coordinated through the phosphorus atom. The X-ray structures of 4-6 show that the phosphorus atom is equatorially coordinated to the triruthenium core. In all cases, gentle heating of Ru(3)(CO)(11)(HL) resulted in the formation of Ru(3)(CO)(9)(mu-H)(mu(3),eta(2)-L)(7-9) in which the NH proton of the indolyl substituent had migrated to the ruthenium core to form a bridging hydride ligand. The X-ray structure of Ru(3)(CO)(9)(mu-H)[mu(3),eta(2)-P(C(6)H(5))(2)(C(9)H(7)N)] (7) shows the deprotonated nitrogen atom of the indolyl moiety bridging over the face of the triruthenium core, bonding to the two ruthenium metal centers to which the phosphorus atom is not bound. The phosphorus atom is forced to adopt an axial bonding mode due to the geometry of the indolylphosphine ligand. Cluster electron counting and X-ray data suggest that the indolylphosphine behaves as a six-electron ligand in this mode of coordination. Compounds 4-9 have been characterized by IR, (1)H, (13)C and (31)P NMR spectroscopy.  相似文献   

14.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

15.
The complexes PtRu(5)(CO)(15)(PMe(2)Ph)(mu(6)-C) (2), PtRu(5)(CO)(14)(PMe(2)Ph)(2)(mu(6)-C) (3), PtRu(5)(CO)(15)(PMe(3))(mu(6)-C) (4), PtRu(5)(CO)(14)(PMe(3))(2)(mu(6)-C) (5), and PtRu(5)(CO)(15)(Me(2)S)(mu(6)-C) (6) were obtained from the reactions of PtRu(5)(CO)(16)(mu(6)-C) (1) with the appropriate ligand. As determined by NMR spectroscopy, all the new complexes exist in solution as a mixture of isomers. Compounds 2, 3, and 6 were characterized crystallographically. In all three compounds, the six metal atoms are arranged in an octahedral geometry, with a carbido carbon atom in the center. The PMe(2)Ph and Me(2)S ligands are coordinated to the Pt atom in 2 and 6, respectively. In 3, the two PMe(2)Ph ligands are coordinated to Ru atoms. In solution, all the new compounds undergo dynamical intramolecular isomerization by shifting the PMe(2)Ph or Me(2)S ligand back and forth between the Pt and Ru atoms. For compound 2, DeltaH++ = 15.1(3) kcal/mol, DeltaS++ = -7.7(9) cal/(mol.K), and DeltaG(298) = 17.4(6) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 4, DeltaH++ = 14.0(1) kcal/mol, DeltaS++ = -10.7(4) cal/(mol.K), and DeltaG(298) = 17.2(2) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 6, DeltaH++ = 18(1) kcal/mol, DeltaS++ = 21(5) cal/(mol.K) and DeltaG(298) = 12(2) kcal/mol. The shifts of the Me(2)S ligand in 6 are significantly more facile than the shifts for the phosphine ligand in compounds 2-5. This is attributed to a more stable ligand-bridged intermediate for the isomerizations of 6 than that for compounds 2-5. The intermediate for the isomerization of 6 involves a bridging Me(2)S ligand that can use two lone pairs of electrons for coordination to the metal atoms, whereas a tertiary phosphine ligand can use only one lone pair of electrons for bridging coordination.  相似文献   

16.
Nonanuclear cluster complexes [Ru9(mu3-H)2(mu-H)(mu5-O)(mu4-ampy)(mu3-Hampy)(CO)21] (4) (H2ampy = 2-amino-6-methylpyridine), [Ru9(mu5-O)2(mu4-ampy)(mu3-Hampy)2(mu-CO)(CO)20] (5), [Ru9(mu5-O)2(mu4-ampy)(mu3-Hampy)2(mu-CO)2(CO)19] (6), and [Ru9(mu4-O)(mu5-O)(mu4-ampy)(mu3-Hampy)(mu-Hampy)(mu-CO)(CO)19] (7), together with the known hexanuclear [Ru6(mu3-H)2(mu5-ampy)(mu-CO)2(CO)14] (2) and the novel pentanuclear [Ru5(mu4-ampy)(2)(mu-CO)(CO)12] (3) complexes, are products of the thermolysis of [Ru3(mu-H)(mu3-Hampy)(CO)9] (1) in decane at 150 degrees C. Two different and very unusual quadruply bridging coordination modes have been observed for the ampy ligand. Compounds 4-7 also feature one (4) or two (5-7) bridging oxo ligands. With the exception of one of the oxo ligands of 7, which is in a distorted tetrahedral environment, the remaining oxo ligands of 4-7 are surrounded by five metal atoms. In carbonyl metal clusters, quadruply bridging oxo ligands are very unusual, whereas quintuply bridging oxo ligands are unprecedented. By using 18O-labeled water, we have unambiguously established that these oxo ligands arise from water.  相似文献   

17.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

18.
Thermolysis of [Ru3(CO)9(mu3-NOMe)(mu3-eta2-PhC2Ph)] (1) with two equivalents of [Cp*Co(CO)2] in THF afforded four new clusters, brown [Ru5(CO)8(mu-CO)3(eta5-C5Me5)(mu5-N)(mu4-eta2-PhC2Ph)] (2), green [Ru3Co2(CO)7(mu3-CO)(eta5-C5Me5)2(mu3-NH)[mu4-eta8-C6H4-C(H)C(Ph)]] (3), orange [Ru3(CO)7(mu-eta6-C5Me4CH2)[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (4) and pale yellow [Ru2(CO)6[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (5). Cluster 2 is a pentaruthenium mu5-nitrido complex, in which the five metal atoms are arranged in a novel "spiked" square-planar metal skeleton with a quadruply bridging alkyne ligand. The mu5-nitrido N atom exhibits an unusually low frequency chemical shift in its 15N NMR spectrum. Cluster 3 contains a triangular Ru2Co-imido moiety linked to a ruthenium-cobaltocene through the mu4-eta8-C6H4C(H)C(Ph) ligand. Clusters 4 and 5 are both metallapyrrolidone complexes, in which interaction of diphenylacetylene with CO and the NOMe nitrene moiety were observed. In 4, one methyl group of the Cp* ring is activated and interacts with a ruthenium atom. The "distorted" Ru3Co butterfly nitrido complex [Ru3Co(CO)5(eta5-C5Me5)(mu4-N)(mu3-eta2-PhC2Ph)(mu-I)2I] (6) was isolated from the reaction of 1 with [Cp*Co(CO)I2] heated under reflux in THF, in which a Ru-Ru wing edge is missing. Two bridging and one terminal iodides were found to be placed along the two Ru-Ru wing edges and at a hinge Ru atom, respectively. The redox properties of the selected compounds in this study were investigated by using cyclic voltammetry and controlled potential coulometry. 15N magnetic resonance spectroscopy studies were also performed on these clusters.  相似文献   

19.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

20.
Coordinatively unsaturated diruthenium complexes, [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+, of which crystallography revealed structures bearing a bridging amidinate ligand perpendicular to the Ru-Ru axis, were synthesized by anion exchange of [(eta5-C3Me5(Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+ Br- by weakly coordinating anions. Variable-temperature NMR showed rapid motion of the bridging amidinate ligand. The coordinatively unsaturated nature of the cationic complexes provides their high reactivity toward a series of two electron donor ligands. Oxidative addition of molecular hydrogen occurred to give [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)(mu-H)Ru(eta5-C5Me5)(H)]+, which was isolated and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号