首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fumed oxides, such as silica, alumina, titania, and mixed X/silicas (X=Al2O3 (AS), TiO2 (TS), CVD-TiO2, Al2O3/TiO2 (AST)), pristine or covered by carbon deposits formed due to pyrolysis of cyclohexene, were studied using nitrogen adsorption–desorption, photon correlation spectroscopy particle sizing, and electrophoresis. A significant influence of the nature of surface-active sites and structural features of oxides (individual silica, mixed fumed, or prepared using chemical vapor deposition (CVD)) on the pyrolysis of cyclohexene is observed with respect to the pore size distributions due to differences between primary particles in aggregates and on their outer surfaces in the filling of channels by pyrocarbon, resulting also in a decrease in fractal dimension. Structural characteristics and dependences of the particle size distribution and electrokinetic potential of X/SiO2 and C/X/SiO2 on the pH of aqueous suspensions suggest that the carbon deposit covers mainly acidic sites at the X/SiO2 interfaces and X phase patches possessing catalytic activity in pyrolysis, as the negative charge of particles is reduced by pyrocarbon grafting.  相似文献   

2.
Preparation of silica, titania and mixed silica/titania particles has been studied. The region for formation of monodisperse SiO2 particles in the phase diagram tetraethyl orthosilicate (TEOS)-ethanol-H2O was studied as a function of NH3 concentration at room temperature. Titania particles could be prepared at lowered temperatures and concentration of ammonia up to 0.01 M. The size of SiO2 particles was 0.03–1 m whereas TiO2 particles were size range 0.5–0.8 m. Mixed SiO2/TiO2 particles were prepared from prehydrolyzed TEOS/EtOH solutions by adding tetraethyl orthotitanate (TEOT). This was accomplished at 3°C and slightly alkaline solutions. The final particle size of the mixed particles was about 0.3 m.  相似文献   

3.
Adsorption of Pb(II), Sr(II), and Cs(I) on fumed silica, alumina, titania, silica/titania (ST), silica/alumina (SA), and alumina/silica/titania (AST) reveals that mixed oxides containing titania have a greater adsorptive capability in respect to metal cations than individual and SA oxides. Pyrocarbon deposits on fumed oxides enhance the adsorption of metal ions. Calculations of electrophoretic potential (ζ) with consideration for the porosity of aggregates of primary particles of AST show a significant influence of surface alumina (at pH<8) and titania and silica (at pH>8) on the ζ values. The effective diameter of particles (Def) of fumed oxides in aqueous media depends on pH for AST stronger than for ST (between isoelectric points (IEPs) of titania and alumina). A significant difference in the pH values of IEP and point of zero charge is observed for AST samples. A pyrocarbon influence on the ζ potential depends on the type of oxide matrix, since ζ increases for certain samples but for others it decreases. These changes depend nonlinearly on pH as well as the secondary particle size distributions (SPSDs) and Def.  相似文献   

4.
Titania and silica-based porous coatings have been produced via sol–gel route in the presence of pore-creating agents PEG and viscous solvent -terpineol, or template agents CTAB, as well as triblock copolimer Pluronic P123. Porous titania films were characterised by HR TEM, UV-Vis, XRD, ellipsometry, ARS methods. The dispersion of the refractive index, the porosity (32–39%) and the thickness of the samples were estimated by integrating sphere transmission and reflection spectra with 3D angular resolved light scattering. The catalytic activity of mesoporous TiO2 and TiO2/ZrO2 as well as SiO2-benzophenone films in the process of CrVI to CrIII and Ag+ to Ag0 photoreduction have been studied.  相似文献   

5.
The rotational barriers between the configurational isomers of two structurally related push–pull 4-oxothiazolidines, differing in the number of exocyclic CC bonds, have been determined by dynamic 1H NMR spectroscopy. The equilibrium mixture of (5-ethoxycarbonylmethyl-4-oxothiazolidin-2-ylidene)-1-phenylethanone (1a) in CDCl3 at room temperature to 333 K consists of the E- and Z-isomers which are separated by an energy barrier ΔG# 98.5 kJ/mol (at 298 K). The variable-temperature 1H NMR data for the isomerization of ethyl (5-ethoxycarbonylmethylidene-4-oxothiazolidin-2-ylidene)ethanoate (2b) in DMSO-d6, possessing the two exocyclic CC bonds at the C(2)- and C(5)-positions, indicate that the rotational barrier ΔG# separating the (2E,5Z)-2b and (2Z,5Z)-2b isomers is 100.2 kJ/mol (at 298 K). In a polar solvent-dependent equilibrium the major (2Z,5Z)-form (>90%) is stabilized by the intermolecular resonance-assisted hydrogen bonding and strong 1,5-type S · · · O interactions within the SCCCO entity. The 13C NMR ΔδC(2)C(2′) values, ranging from 58 to 69 ppm in 1ad and 49-58 ppm in 2ad, correlate with the degree of the push-pull character of the exocyclic C(2)C(2′) bond, which increases with the electron withdrawing ability of the substituents at the vinylic C(2′) position in the following order: COPh COEt > CONHPh > CONHCH2CH2Ph. The decrease of the ΔδC(2)C(2′) values in 2ad has been discussed for the first time in terms of an estimation of the electron donor capacity of the S fragment on the polarization of the CC bonds.  相似文献   

6.
The present paper reviews in detail the different studies now being conducted by our research team concerning the ultradeep hydrodesulfurization (HDS) of dibenzothiophene (DBT) derivatives over Mo/TiO2 and Mo/TiO2–Al2O3 catalysts. First, a detailed characterization of Mo/TiO2 (P-25 Degussa, 50 m2/g) catalysts prepared by equilibrium adsorption technique shows that Mo- species are highly and uniformly dispersed on the surface of titania up to 6.6 wt% MoO3 loading. Above this value, some aggregation of Mo occurs, leading to the formation of bulk MoO3. Below 6.6 wt% MoO3 loading, the Raman spectroscopy data of the calcined samples show that the supported Mo-species possess a highly distorted octahedral MoO6 structure. TiO2–Al2O3 composites were prepared by chemical vapor deposition (CVD) using TiCl4 as a precursor. Using several characterization techniques, we demonstrated that the support composite presents a high dispersion of TiO2 over -Al2O3 without forming precipitates up to ca. 11 wt% loading. Moreover, the textural properties of the composite support are comparable to those of alumina. Under the present sulfidation conditions (673 K, 5%H2S/95%H2), Mo-species supported on TiO2 are better sulfided than on alumina, as demonstrated using XPS. This can be attributed to the relatively lower interaction between Mo-species and titania. The state of sulfide species supported on the composite support can be considered as a transition state between TiO2 and Al2O3. However, at relatively higher TiO2 loadings (ca. 11 wt%), Mo/TiO2–Al2O3 catalysts exhibit sulfidability similar to that of Mo/TiO2. The HDS tests conducted in both the laboratory and in industry show that sulfide catalysts supported on TiO2–Al2O3 (ca. 11 wt% TiO2) are more active than those supported on TiO2 or Al2O3.  相似文献   

7.
The influence of silica/titania and silica/zirconia nanoparticles on thermooxidative degradation of PMMA was studied by non-isothermal thermogravimetry. Kinetic parameters describing the length of the oxidation induction periods were obtained from the treatment of the dependence of oxidation onset temperature on heating rate. Using these parameters, the protection factors of nanoparticles have been calculated. It was found that SiO2/TiO2 nanoparticles increase the thermooxidation stability of PMMA where the stabilizing effect, expressed as the protection factor, depends on temperature only slightly. The stabilizing effect of SiO2/ZrO2 is much stronger than that of SiO2/TiO2 and decreases with increasing temperature.  相似文献   

8.
The systematic modifications of silica matrix as a function of modified Ti-alkoxide contents (Au nanocrystals doped TiO2/SiO2 mixed oxide thin films) have been investigated by the sol-gel process. A structural analysis on the various steps of the hydrolysis-condensation process as well as solid powder is determined by IR, UV-Visible, and 29Si NMR spectroscopy. 29Si MAS spectra are characterized by broad lines for the three types of sites. Different distributions (Q 2, Q 3, and Q 4 units) observed in the TiO2/SiO2 (1 : 3) sample. Proper control of the process condition, modifying the Ti alkoxide as a less reactive precursor, improves the increase the amount of Ti–O–Si bonding in the silica network of TiO2/SiO2 mixed oxide matrices and the distribution of metal oxides. This method can be used for the preparation of homogeneous metal and metal-metal alloy nanocrystals deposition from mixed oxide thin films.  相似文献   

9.
Optically active polyurethane/titania/silica (LPU/TiO2/SiO2) multilayered core–shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO2/SiO2 was characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8–14 μm) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO2/SiO2 exhibited clearly multilayered core–shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO2/SiO2 multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value.  相似文献   

10.
Adsorbents synthesized by grafting of titania onto mesoporous silica gel surfaces at different temperatures were studied by means of nitrogen adsorption–desorption and water desorption. The pore size distribution f(Rp) of titania/silica gel depends on the titania concentration (CTiO2) and the temperature of titania synthesis. Nonuniformity of TiO2 phase is maximal at a low CTiO2 value (3.2 wt.% anatase deposited at 473 K), and two peaks of the fractal dimension distribution f(D) are observed at such a concentration of titania, but at larger CTiO2 values, only one f(D) peak is seen. More ordered filling of pores and adsorption sites by nitrogen, reflecting in the shape of adsorption energy distributions f(E) at different pressures of adsorbate, is observed for adsorbent with titania (rutile+anatase) grafted on silica gel at a higher temperature (673 K).  相似文献   

11.
A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals (10 ± 3 nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO2–C–Fe3O4/γ–Fe2O3 samples) with a large and accessible porosity made up of wide mesopores (>9 nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180 mg g−1 for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field.  相似文献   

12.
Polycrystalline samples of the Lu1−xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid solution samples with x≤0.487 decompose at a single well defined temperature, while those with x≥0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x≤0.487, the primary magnetic transition occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R=Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a 200 K onset transition temperature is dominant in the samples with x≥0.634.  相似文献   

13.
Sol–gel chemistry of SiO2(1 – x)TiO2(x) involving the partial pre-hydrolysis of tetraethoxysilane (TEOS) and subsequent reaction with titanium isopropoxide has been used to produce materials of high area and variable absorption edge in the UV-visible spectrum. As x increases so the total surface area of these phases unexpectedly passed through a maximum, but the UV-vis cut off moved to greater wavelength. On the other hand, X-ray photoelectron spectroscopy (XPS) measured O1s binding energies and temperatures of maximum rates of reduction (Tmax) that were intermediate between those of pure SiO2 and TiO2. Both suggested that SiO2(1 – x)TiO2(x) samples were an intimate mixture of Si4 + and Ti4 + in the sol–gel matrix. Perfluoroalkylsilane (PFAS) was strongly adsorbed on this sol–gel coating making it strongly hydrophobic. This mode of modification was better than PFAS incorporation at the start of the sol–gel synthesis. Such sol–gel chemistry might in the future be optimised for water-repelling surfaces.  相似文献   

14.
以气相法白炭黑(FS)为Si前驱体,通过镁热还原工艺和对获得的NPs-Si进行SiOx和C复合包覆,制备出NPs-Si@SiOx@C纳米复合结构,将其用作锂电池负极进行电化学性能测试。研究结果表明:镁热还原过程分两步进行,即SiO_2与Mg先生成Mg2Si中间相,Mg2Si继续与SiO_2反应生成Si的反应路径;根据此规律镁热还原气相法白炭黑的Si转化率达87.9%。电化学性能测试中NPs-Si@SiOx@C负极在2.0 A·g-1的电流密度下有1 300 mAh·g-1的容量平台,1 000次循环后的放电比容量为964.2mAh·g-1,容量保持率达75%。  相似文献   

15.
Emanation thermal analysis (ETA) was used in the characterization of microstructure changes during heating ofprecursors for the titania based materials: hydrous titania, TiO2nH2O (n=0.58) and hydrous titania containing 10% ruthenia,(TiO2)0.9(RuO2)0.1nH2O (n=1.5). The precursors were heated at the constant rate 6 K min–1 in argon flow in the range 20–1000°C. ETA results were compared with the theoretical curves simulating the temperature dependences of radon release rate, E(T). Two mathematical models were used in the simulation. The models considered either subsequent or simultaneous solid state processes (i.e. dehydration, crystallization orphase transition, resp.) during thermal treatment of titania based materials. A good agreement was found between experimental and the simulated ETA curves. The results of ETA were confirmed by XRD patterns of intermediate products of thermal treatment of the precursors.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
Different amounts of CVD-titania ( from 2.3 to 19.2 wt%) with amorphous and crystalline (anatase) phases were synthesized on silica gels (Kieselgel 40, 60, and 100) and characterized by means of XRD, IR, DTG, and adsorption methods. The amounts of titania depend strongly on the pore size distribution of the support, as the narrower the pores, the lower the deposit concentration due to diminution of the accessibility of narrower pores and deceleration of titania grafting in them. A portion of CVD-titania filling matrix pores is rather amorphous than that forming on the outer (external) surfaces of silica gel grains, as anatase crystallites have the average size of 70 nm for KG 40/TiO2 ( = 6.5 wt% including 26% of anatase and 74% of amorphous titania), 21 nm (KG 60/TiO2 at = 11 wt%, 16% anatase) and 16 nm (KG 100/TiO2 at = 19.2 wt%, 29% anatase), which are larger than the average pore size of the silica gels. The crystallite size decreases with increasing average pore diameter.  相似文献   

17.
The nanosized titania and TiO2/SiO2 particles were prepared by the microwave-hydrothermal method. The effect of physical properties TTIP/TEOS ratio and calcination temperature has been investigated. The major phase of the pure TiO2 particle is of the anatase structure, and a rutile peak was observed above 800°C. In TiO2/SiO2 particles, however, no significant rutile phase was observed, although the calcination temperature was 900°C. No peaks for the silica crystal phase were observed at either silica/titania ratio. The crystallite size of TiO2/SiO2 particles decreases as compared to pure TiO2 at high calcination temperatures. The TiO2/SiO2 particles show higher activity on the photocatalytic decomposition of orange II as compared to pure TiO2 particles.  相似文献   

18.
Solvent effect on the νc frequency of CH stretching vibration of the blue shifted F3CH…FCD3 complex has been studied in liquefied N2, CO, Ar, Kr and Xe. In the case of Xe, the spectroscopic measurements have also been extended to the solid state. It was found that the νc position of the complex in the solutions studied lowers with respect to the value in the gas phase. In liquid Xe, characterized by the largest permittivity, this effect reaches its maximum value of −14.5 cm−1. The νc frequency begins to grow again just below the freezing point of Xe, where a noticeable (15%) increase of the density of Xe occurs. The experimental results obtained for the liquid phase have been analyzed in the framework of the Onsager-like reaction field model and Polarizable Continuum Model (PCM) implemented into a standard Gaussian 98 Program.  相似文献   

19.
SiO2(1 – x)-TiO2(x) monomode waveguides at 632.8 nm, with x in the range 0.07–0.2 and thickness of about 0.4 m, were deposited on silica substrates by a dip-coating technique. Nucleation of TiO2 nanocrystals and the growth of their size by thermal annealing up to 1300°C were studied by waveguided Raman scattering in the SiO2(0.8)-TiO2(0.2) composition. In the low frequency region (5–50 cm–1) of the VV and HV polarized Raman spectra the symmetric and quadrupolar acoustic vibrations are observed. The mean size of the titania particles are obtained from the frequencies of the Raman peaks. The results are compared with those obtained from the measure of the linewidths in the X-ray diffraction spectra. Nanocrystals with a mean size in the range 4–20 nm are obtained by thermal annealing in a corresponding range of 700–1300°C.  相似文献   

20.
SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L−1. The anatase and rutile phase in the SiO2/TiO2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO2/TiO2 composite microspheres were 552 and 0.652 mL g−1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号