首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model of the multiple adsorption of atomic hydrogen on the surface of single-walled carbon nanotubes of the zigzag and arm-chair types was constructed. The adsorption model is based on the Anderson periodic model. An analytic equation for the band structure of carbon nanotubes with adsorbed hydrogen atoms was obtained, and the special features of this structure were studied. The dependence of the band structure of carbon nanotubes on the concentration of adsorbed hydrogen atoms was analyzed. The model constructed can be used to study adsorption of other univalent atoms on the surface of carbon particles.  相似文献   

2.
We study the gas molecule adsorption effects on the electrical conductivity of both zigzag (9, 0) and armchair (5, 5) carbon nanotubes. Using the tight-binding model, Green’s function technique and coherent potential approximation, it is found that the adsorption of some gas molecules can cause a change in the electrical conductivity of metallic single-walled carbon nanotubes.  相似文献   

3.
We investigate theoretically the feasibility of amplification of terahertz radiation in aligned achiral carbon nanotubes, a zigzag (12,0) and an armchair (10,10) in comparison with a superlattice using a combination of a constant direct current (dc) and a high-frequency alternate current (ac) electric fields. The electric current density expression is derived using the semiclassical Boltzmann transport equation with a constant relaxation time. The electric field is applied along the nanotube axis. Analysis of the current density versus electric field characteristics reveals a negative differential conductivity behavior at high frequency, as well as photon assisted peaks. The photon assisted peaks are about an order of magnitude higher in the carbon nanotubes compared to the superlattice. These strong phenomena in carbon nanotubes can be used to obtain domainless amplification of terahertz radiation at room temperature.  相似文献   

4.
The coefficients of electron diffusion and conductivity have been calculated for single-layer semiconducting carbon nanotubes in an external electric field with the strength vector directed along the nanotube axis. The evolution of the electronic system of the nanotubes has been described using the Boltzmann kinetic equation in terms of the quasi-classical approximation of relaxation time. An analytical expression of the electron diffusion coefficient has been obtained, and its nonlinear field dependence has been revealed.  相似文献   

5.
The conductivity of the single-walled zigzag carbon nanotube system was studied in an alternating electric field with the intensity vector along the axis of nanotubes. The electronic carbon nanotube system was macroscopically considered in terms of the Boltzmann kinetic equation in the constant relaxation time approximation while omitting the interaction with the phonon subsystem. The nonlinear responses to the applied harmonic field were calculated and analyzed.  相似文献   

6.
张超  白静 《低温与超导》2007,35(2):151-153
利用巨正则系综蒙特卡罗(GCMC)的方法模拟了氢在多壁碳纳米管中的吸附,氢气分子之间、氢气分子和碳原子之间的相互作用势能采用Lennard-Jones势能模型。模拟了不同结构参数(管内径、管壁数、管壁间距)的多壁碳纳米管在77K和298K下的吸附等温线,分析了多壁碳纳米管的管内径、管壁数以及管壁间距对吸附性能的影响。模拟结果表明:多壁碳纳米管的管壁数和管壁间距对吸附性能的影响较明显;管壁数越少,管壁间距越大,其吸附性能越好;多壁碳纳米管的管内径对其吸附性能的影响甚微。  相似文献   

7.
In this paper, the effect of electric field on axial buckling of boron nitride nanotubes is investigated. For this purpose, molecular dynamics simulation and continuum mechanics are used for the first time simultaneously. In molecular dynamics simulation, the potential between boron nitride atoms is considered as Tersoff and Timoshenko beam theory is used in continuum mechanics. In this paper, buckling of zigzag and armchair boron nitride nanotubes are investigated. Here, the effects of the electric field and the length of the boron nitride nanotube on the critical load are investigated and it is shown that the effect of the electric field is different with respect to the arrangement of atoms in the boron nitride nanotubes. In fact, the electric field creates axial and torsional loads on the zigzag and armchair nanotube, respectively. Axial buckling of the zigzag nanotube is dependent on the electric field, whereas in the armchair nanotubes, the electric field changes have no effect on the axial buckling. To better understand the impact of the electric field on axial buckling, these results are compared with the continuum mechanics.  相似文献   

8.
Equilibrium and non-equilibrium molecular dynamics simulations are applied to obtain the diffusion coefficient and electric conductivity of ions in dilute electrolytes confined in neutral cylindrical pores. The electrolyte is described with the restricted primitive model and the wall of the pore is modelled as a soft wall. The equilibrium molecular dynamics simulations show that the axial diffusion coefficient of ions decreases with increasing confinement. For a fixed pore radius the diffusion coefficient decreases with increasing number density of the ions. The current response of the system to an applied electric field is maintained at constant temperature by Gaussian isokinetic equations of motion, and at constant concentration by periodic boundary conditions with recycling of ions in the axial direction. The electric conductivity is calculated from the current density and the electric field applied for different pore sizes. In contrast to the trend in diffusivity, conductivity increases slightly in smaller pores. For a very small pore, however, conductivity is lower than the bulk, because oppositely charged ions moving in opposite directions under the electric field cannot avoid collisions with each other in a narrow channel.  相似文献   

9.
Optical conductivity of a zigzag carbon nanotube is investigated in the context of the Holstein model. Green??s function approach is applied to calculate the optical conductivity as a function of photon frequency, temperature, and electron?Cphonon coupling strength. Based on our results, optical conductivity decreases with electron?Cphonon coupling constant for both metallic and semiconducting carbon nanotubes. Our results show that temperature yields shortening the height of peaks of zigzag CNT optical absorption.  相似文献   

10.
CNx nanotubes have been prepared by acetonitrile decomposition over Ni, Co and Ni/Co catalysts. X-ray photoelectron spectroscopy study on the samples revealed a change of nitrogen concentration and shape of N 1s line with variation of the catalyst used. Quantum-chemical calculations on tube fragments showed the energy of N 1s level depends on the atomic structure of carbon tube and kind of incorporated nitrogen. The largest binding energies were found to be characteristic of three-coordinated nitrogen atoms doping the zigzag and chiral carbon nanotubes.  相似文献   

11.
The electrical resistivity of liquid metallic hydrogen at a temperature of 3000 K and a density of 0.35 mol/cm3 is calculated. Hydrogen is considered as a three-component system consisting of electrons, protons, and neutral hydrogen atoms. The second order of perturbation theory in electron-proton and electron-atom interactions is used to determine the inverse relaxation time for electric conductivity. The Coulomb electron-electron interaction is taken into account in the random phase approximation and the exchange interaction and correlation of conductivity electrons are included in the local-field approximation. The model of hard spheres is used for the proton and atomic subsystems. The concentration of the electrically neutral atomic component proved to be significantly lower than the value assumed by the discoverers of metallic hydrogen.  相似文献   

12.
This paper reports on the results of MNDO calculations of the atomic adsorption of oxygen and fluorine on the surface of armchair and zigzag single-walled carbon nanotubes with a cylindrical symmetry. The calculations are carried out within the molecular cluster and ion-incorporated covalent-periodic cluster models at the modern quantum-mechanical semiempirical MNDO level. The electronic and energy characteristics of the oxidation and fluorination processes are analyzed, and the most energetically favorable oxide structure of the (6, 6) nanotube is determined. It is found that narrow-gap tubulenes show a tendency to metallic behavior as their surface is saturated with oxygen atoms.  相似文献   

13.
袁剑辉  程玉民 《物理学报》2007,56(8):4810-4816
用分子动力学方法研究了N,O,Si,P,S等5种杂质对扶手椅型(5,5)和锯齿型(9,0)单壁碳纳米管杨氏模量的影响.结果表明:直径为0.678和0.704 nm的扶手椅型(5,5)和锯齿型(9,0)碳纳米管在无掺杂时其杨氏模量分别为948和804 GPa.在掺杂浓度10%以下,碳纳米管的拉伸杨氏模量均随掺杂浓度增加近似呈线性下降规律,下降率以Si掺杂最大,N掺杂最小.对与C同周期的元素掺杂,随原子序数增加碳纳米管的杨氏模量下降率增大;与C不同周期的元素掺杂,碳纳米管的杨氏模量随掺杂浓度增加下降率更大,但 关键词: 碳纳米管 杂质 杨氏模量 分子动力学方法  相似文献   

14.
The conditions of formation of local states in the energy spectra of semi-infinite carbon nanotubes with regularly arranged atoms adsorbed on the outer surface are studied in the π-electron approximation. The influence of the adsorption type (physical and chemical), the donor-acceptor properties of adsorbed atoms, their concentration on the graphene surface, and the nanotube diameter on the characteristics of the local states that arise is considered. It is shown that both physical and chemical adsorptions cause a decrease in the band gap separating the upper filled energy band and the lower vacant band. This effect can significantly change the electrical and optical properties of the nanotubes under consideration in comparison with the initial “pure” tubulene.  相似文献   

15.
A new method is proposed for controlling the motion of nanoelectromechanical systems based on carbon nanotubes. In this method, a single-walled nanotube acquires an electric dipole moment owing to the chemical adsorption of atoms or molecules at open ends of the nanotube. The electric dipole moments of carbon nanotubes with chemically modified ends are calculated by the molecular orbital method. These nanotubes can be set in motion under the effect of a nonuniform electric field. The possibility of controlling the motion of nanoelectromechanical systems with the proposed method is demonstrated using a nanotube-based gigahertz oscillator as an example. The operating characteristics of the gigahertz oscillator are analyzed, and its operation is simulated by the molecular dynamics method. The controlling parameters and characteristics corresponding to the controlled operating conditions at a constant frequency for the system under investigation are determined.  相似文献   

16.
The influence of various gaseous media on the temperature dependence of the electric conductivity σ of multiwalled carbon nanotubes (MWNTs) synthesized using the method of catalytical chemical vapor deposition (CVD) has been studied. The σ(T) curves were measured in a temperature range from 4.2 to 300 K in helium and its mixtures with air, methane, oxygen, and hydrogen. The introduction of various gaseous components into a helium atmosphere leads to a significant decrease in the conductivity of MWNTs in the interval between the temperatures of condensation and melting of the corresponding gas. Upon a heating-cooling cycle, the conductivity restores on the initial level. It is concluded that a decrease in σ is caused by the adsorption of gases on the surface of nanotubes.  相似文献   

17.
The electronic structures of carbon nanotubes doped with oxygen dimers are studied using the ab initio pseudopotential density functional method. The fundamental energy gap of zigzag semiconducting nanotubes exhibits a strong dependence on both the concentration and configuration of oxygen-dimer defects that substitute for carbon atoms in the tubes and on the tube chiral index. For a certain type of zigzag nanotube when doped with oxygen dimers, the energy gap is closed and the tube becomes semimetallic. At higher oxygen-dimer concentrations the gap reopens, and the tube exhibits semiconducting behavior again. The change of the band gap of the zigzag tube is understood in terms of their response to the strains caused by the dimer substitutional doping.  相似文献   

18.
The possibility of forming solitons in zigzag carbon nanotubes is investigated using the coupled equations for the classical function of the electron distribution and the Maxwell equations for an electromagnetic field. It is demonstrated that the solitons are generated as a result of correlated changes in the classical distribution function and the electric field induced by nonequilibrium electrons of a carbon nanotube. The effective equation describing the dynamics of the electromagnetic field is derived. The existence of solitons is confirmed by the results of numerical calculations. The characteristics of solitons are investigated as a function of the diameter of zigzag carbon nanotubes.  相似文献   

19.
An ab initio DFT study of atomic and electronic structure of carbyne crystals was carried out. The influence of hydrogen impurities on carbyne structure was investigated. Calculations with atomic relaxations showed that carbon chains in the carbyne crystal structure are bow-like curved; free-energy calculations showed that the most probable lengths of those chains are four and six atoms, which is in a good agreement with experiments. Carbyne-crystal electronic-structure analysis showed that there is a small gap of 0.09 eV near the Fermi level in four-atomic carbyne, while there is no such gap in six-atomic carbyne. In studying of the hydrogen impurity influence on the atomic and electronic structure of carbyne crystals, hydrogen atoms were embedded in two directions: across and along carbon chains in the crystal. As a result we found that the crystal structure is not distorted in the case of hydrogen embedded across the chains, while the type of bonding between carbon atoms in carbon chains in the carbyne crystal structure depended on the impurity concentration. The crystal structure was distorted when hydrogen was embedded along the chains. The concentration of impurities influences the conductivity of a carbyne crystal.  相似文献   

20.
冯黛丽  冯妍卉  陈阳  李威  张欣欣 《中国物理 B》2013,22(1):16501-016501
The thermal conductivity of carbon nanotubes with certain defects (doping, Stone-Wales, and vacancy) is investigated by using the non-equilibrium molecular dynamics method. The defective carbon nanotubes (CNTs) are compared with perfect tubes. The influences of type and concentration of the defect, length, diameter, and chirality of the tube, and the ambient temperature are taken into consideration. It is demonstrated that defects result in a dramatic reduction of thermal conductivity. Doping and Stone-Wales (SW) defects have greater effect on armchair tubes, while vacancy affects the zigzag ones more. Thermal conductivity of the nanotubes increases, reaches a peak, and then decreases with increasing temperature. The temperature at which the thermal conductivity peak occurs is dependent on the defect type. Different from SW or vacancy tubes, doped tubes are similar to the perfect ones with a sharp peak at the same temperature. Thermal conductivity goes up when the tube length grows or diameter declines. It seems that the length of thermal conductivity convergence for SW tubes is much shorter than perfect or vacancy ones. The SW or vacancy tubes are less sensitive to the diameter change, compared with perfect ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号