首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.  相似文献   

2.
The kinetic plot method, originally developed for isocratic separations, was extended to the practically much more relevant case of gradient elution separations. A set of explicit as well as implicit data transformation expressions has been established. These expressions can readily be implemented in any calculation spread-sheet program, and allow to directly turn any experimental data set representing the relation between the separation efficiency and the flow rate measured on a single column into the kinetic performance limit curve of the tested separation medium. Since the kinetic performance limit curve is based on an extrapolation to columns with a different length, it should be realized that the curve is only valid under the assumption that the gradient time and the delay time (if any) are adapted such that the analytes are subjected to the same relative mobile phase history when the column length is changed. Both experimental and numerical data are presented to corroborate the fact that the kinetic performance limit curves that are obtained using the proposed expressions are indeed independent of the column length the experimental data were collected in. Deviations might arise if excessive viscous heating occurs in columns with a pronounced non-adiabatic thermal behaviour.  相似文献   

3.
Liquid chromatography with single columns often does not succeed in the analysis of complex samples, in terms of resolution and analysis time. A relatively simple solution to enhance chromatographic resolution is the modulation of the stationary phase through the serial coupling of columns. This can be implemented with any type of column using compatible elution conditions and conventional instruments. This review describes the key features of column coupling and published procedures, where two or more columns were coupled in series to solve separation problems. In all reports, the authors could not resolve their samples with single columns, whereas significant enhancement in chromatographic performance was obtained when the columns were combined. Particularly interesting is the reduction in the analysis time in the isocratic mode, which alleviates the “general elution problem” of liquid chromatography, and may represent a stimulus for the proposal of new procedures, especially in combination with mass spectrometric, electrochemical and refractometric detection. Developments proposed to make the serial coupling of columns useful in routine and research laboratories are outlined, including optimisation strategies that facilitate the selection of the appropriate column combination and elution conditions (solvent content, flow rate or temperature) in both isocratic and gradient modes. The availability of zero dead volume couplers, able to connect standard columns, and the commercialisation of short columns with multiple lengths, have expanded the possibilities of success.  相似文献   

4.
分别用乙二胺、二乙胺、三乙胺将自制的以甲基丙烯酸缩水甘油酯(GMA)为单体、乙二醇二甲基丙烯酸酯(EDMA)为交联剂的整体柱修饰为弱、强阴离子交换整体柱。考察了该整体柱的性能,选择出分离蛋白质(牛血清白蛋白、溶菌酶和谷胱甘肽)的最佳实验条件,并在最佳分离条件下考察了这些蛋白质在整体柱上的色谱行为和该整体柱对纤维素降解酶的分离纯化情况。实验结果表明,该整体柱性能良好,可以实现对纤维素降解酶的快速分离与纯化。同时,实验也证明采用梯度洗脱可以实现对某些蛋白质的分离纯化。  相似文献   

5.
In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of approximately 25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18相似文献   

6.
Attempts to theoretically address the problems involved in transferring linear gradient elution methods have been somewhat ad hoc due to the simplifying assumptions usually made in conventional gradient elution theory. Until now, all equations based on the k* parameter of linear gradient elution theory used as the basis for predicting the separation selectivity have not explicitly included the effect of the dwell volume (VD). Using an exact equation for predicting k*, that is, one which fully accounts in an a priori fashion for VD, we find a set of simple yet exact equations which unequivocally must be satisfied to transfer an optimized linear gradient elution method from one system (column or instrument or both) to another. These relationships absolutely mandate that a change in the instrument dwell volume requires a proportional change in the column volume; in turn, a change in the column volume requires a proportional change in the flow rate and/or gradient time to maintain a constant gradient steepness. Although we are not the first to suggest these guidelines, this work provides a complete theoretical foundation for these exact guidelines for the maintenance of gradient selectivity for the case of transferring a linear gradient elution method between different columns packed with the same particles and/or between different instruments.  相似文献   

7.
The performances of core–shell 2.7 μm and fully porous sub‐2 μm particles packed in narrow diameter columns were compared under the same chromatographic conditions. The stationary phases were compared for fast separation and determination of five new antiviral drugs; daclatasvir, sofosbuvir, velpatasvir, simeprevir, and ledipasvir. The gradient elution was done using ethanol as green organic modifier, which is more environmentally friendly. Although both columns provided very good resolution of the five drugs, core–shell particles had proven to be of better efficiency. Under gradient elution conditions, core–shell particles exhibited faster elution, better peak shape, and enhanced resolution adding to lower system backpressure. The column backpressure on sub‐2 μm particles was more than twice that on core–shell particles. This gives a chance to use conventional high‐performance liquid chromatography conditions without needing special instrumentation as that required for ultra‐high performance liquid chromatography. The method was validated for determination of the five drugs by gradient elution using mobile phase composed of organic modifier ethanol and aqueous part containing 0.75 g sodium octane sufonate and 3.0 g sodium dihydrogen phosphate per liter at pH of 6.15. Detection was done using UV‐detector set at 210 nm. The linearity, accuracy, and precision were found very good within the concentration range of 2–200 μg/mL.  相似文献   

8.
Radial chromatography is one of the most efficient tools for the fast analytical and preparative separation of complex samples. Compared to conventional axial liquid chromatography, it has obvious advantage espe- cially in the preparation of biological sa…  相似文献   

9.
We developed a method to separate colloidally dispersed nanoparticles on monolithic capillary columns. Silica nanoparticles were eluted according to their sizes, and the plots of the logarithm of the size of nanoparticles against their elution volume showed good linearity (r=0.992) over wide range of sizes. Because of the high porosity of the monolithic column (porosity; 88%), the column's length could be increased without clogging of the dispersed samples and the pressure in a long column (500 mm × 0.2 mm i.d.) was low, with a value of 5.8 MPa at a flow rate of 1 μL/min. We demonstrate that this method using monolithic capillary columns could be used as a powerful tool for size separation of nanometer-size materials, which will open a new pathway to quality control of nanomaterials in nanotechnology applications.  相似文献   

10.
The potential of high-speed analyses by rapid resolution liquid chromatography (RRLC) and RRLC/MS on 1.8-microm porous particles packed into short columns operated at high flow-rate was investigated and compared with the performance of 5-microm porous particles packed into conventional columns. Using similar chemistries, the ease of conversion from conventional HPLC to an RRLC method was demonstrated. In order to display the practicality of RRLC separations, the analysis of pesticides in crops and catechins in Japanese green tea was selected. Using the Japanese Food Hygiene Law method, which employs a conventional 5-microm RP column (250 mm x 4.6 mm) for quantification of pesticides in crops, the analysis time was 25 min under isocratic conditions. Using the RRLC method on the short (50 mm x 4.6 mm) column packed with 1.8-microm porous particles, the same separation could be performed in 0.8 min with the RRLC/MS method without a loss in resolution. At the highest flow rate, compared to the conventional method, the time could be reduced by a factor of 31. In gradient elution, the fastest separation of catechins in Japanese green tea was achieved by RRLC on 50-mm x 4.6-mm id or 50-mm x 2.1-mm id RRLC columns packed with 1.8-microm particles. The analysis time at 5 mL/min was less than 1 min. Compared to the conventional HPLC method on a 150-mm column packed with 5-microm particles, time was reduced by a factor of 15. The effect of other experimental parameters such as the column temperature, acquisition rate of the detector and the influence of cell volume on chromatographic performance was also investigated. After the optimization, the analysis precision under the fastest RRLC conditions was examined. RSDs of retention time and peak area were 0.2% and 0.47%, respectively.  相似文献   

11.
Hexyl methacrylate (HMA)-based monolithic semi-micro columns were prepared by in situ polymerization within the confines of 1.02-mm-i.d. silicosteel tubing for reversed-phase and/or precipitation–redissolution liquid chromatography. Practically useful monolithic columns with adequate separation efficiency, high permeability, and good mechanical strength were successfully obtained using a polymerization mixture comprising 24% hexyl methacrylate (HMA), 6% ethylene dimethacrylate (EDMA), 44.5% 1-propanol, and 25.5% 1,4-butanediol. The column performance was evaluated through the separations of a series of alkylbenzenes. At a normal flow rate of 50 μL min−1, the produced HMA-based monolithic columns typically exhibited 3,000 theoretical plates for a 20-cm-long column, and the pressure drop was generally less than 1 MPa per 20 cm. The monolithic columns were resistant to at least 15 MPa, and could be properly operated at 15–20 times higher flow rate than normal, reducing the separation time to 1/15–1/20. The HMA-based monolithic columns were applied to rapid and efficient separations of proteins such as ribonuclease A, cytochrome c, transferrin, and ovalbumin in the precipitation–redissolution mode. Using a CH3CN gradient elution at a flow rate of 1,000 μL min−1, four proteins were baseline separated within 20 s.  相似文献   

12.
Polymer monolithic columns with I.D. between 100 and 320 microm were prepared by in-situ polymerization of styrene and divinylbenzene in fused silica capillaries. The effects of monolithic column I.D. on the separation of proteins in reversed-phase capillary-liquid chromatography under gradient elution were systemically studied. The loading capacity was positively proportional to the volume of the stationary phase. It was found that the smaller diameter columns showed better performance for protein separation. The minimum plate height decreases from 34.99 microm (320 microm I.D. column) to 5.39 microm (100 microm I.D. column) for a retained protein. After studying the three parameters of the Van Deemter equation, it was interpreted that the smaller diameter can provide less flow resistance and the better performance may also be improved by the increasing of the effective diffusion. This conclusion was also supported by the data of separation permeability and breakthrough curves.  相似文献   

13.
Abstract

The effect of column dimension on resolution, sample capacity, retention time, efficiency and mobile phase composition were studied, using both constant flow rate and constant linear velocity. The four columns selected (A = 238 × 3.2 mm, B = 153 × 4.0 mm, C = 116 × 4.6 mm and D = 50 × 7 mm) had the same volume. K1 values were found to be constant, within experimental error, for all columns. At constant linear velocity, the retention time was found to be a linear function of column length, while at constant flow rate retention time was constant for all columns. The longest column (A) generated the largest N values while columns 3 and C gave the lowest H values, for dilute solutions, while they decreased with decreasing column length. On the other hand, it was observed that as the sample size increased, N generated by column A decreased more rapidly and eventually fell below the values generated by columns B and C. These two columns (B & C) can tolerate a larger sample size with less reduction in N value than the longest column. It is important to note that although there were minor differences in performance between columns B and C, there were significant differences between them (B and C) and the other two columns (A and D). Column A offered the highest sensitivity (narrower peaks) for dilute solutions, while columns B and C offered higher loadability. The volume of organic modifier in the mobile phase affected the retention equally in the four columns. It was also found that equal separation (a) was obtained for each column at constant flow rate and constant linear velocity, except with the latter the retention times were longer.  相似文献   

14.
Xiangli Sun  Yukui Zhang 《Talanta》2010,82(1):404-5307
A simple one-step in situ “click” modification strategy was developed for the preparation of hydrophobic organic monolithic columns for the first time. The column morphology and surface chemistry of the fabricated monolithic columns were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The chromatographic performances of the C8/C18 “click” monoliths were evaluated through the separation of a mixture of five proteins such as ribonuclease A, soybean trypsin inhibitor, cytochrome c, bovine haemoglobin and bovine serum albumin. Compared with the blank column, the higher hydrophobicity stationary phases obtained from the “clicked” modification have longer retention times and higher resolution for the five proteins. The separation of five proteins mixture on click C18 monolith with gradient elution at different flow rates was also investigated, the baseline separation of five proteins could be achieved at three different flow rates.  相似文献   

15.
The performance of microbore columns with polypropylene (PP) capillary-channeled polymer (C-CP) fibers as the support/stationary phase for separation of macromolecules has been investigated. Polypropylene C-CP fibers (40 μm diameter) were packed in fluorinated ethylene propylene (FEP) tubing of inner diameter 0.8 mm and lengths of 40, 60, 80, and 110 cm. The performance of PP fiber packed microbore columns (peak width, peak capacity, and resolution) was evaluated for separation of a three-protein mixture of ribonuclease A, cytochrome c, and transferrin under reversed-phase gradient conditions. The low backpressure characteristics of C-CP fiber columns enable operation at high linear velocities (up to 75 mm s(-1) at 1.5 mL min(-1)). In contrast with the performance of other phases, such velocities enable enhanced resolution of the three-protein mixture, because peak widths decrease with velocity. Increased column length resulted in increased resolution, because the peak widths remained essentially constant, although retention times increased. In addition, it was found that the peak capacity increased with column length and linear velocity. Radial compression of the microbore tubing enhanced the homogeneity of the packing and, thereby, separation efficiency and resolution. Radial compression of columns resulted in a decrease in the interstitial fraction (~5%), but increased resolution of ~14% between ribonuclease A and cytochrome c. Even so, a linear velocity of 75 mm s(-1) required a backpressure of 9.5 MPa only. It is clear that the fluid and solute-transport properties of the C-CP fiber microbore columns afford far better performance than is obtainable by use of standard format columns. The ability to achieve high separation efficiencies, rapidly and with low volume flow rates, holds promise for high-capacity protein separations in proteomics applications.  相似文献   

16.
Reversed phase and size-exclusion chromatography methods are commonly used for protein separations, although they are based on distinctly different principles. Reversed phase methods yield hydrophobicity-based (loosely-termed) separation of proteins on porous supports, but tend to be limited to proteins with modest molecular weights based on mass transfer limitations. Alternatively, size-exclusion provides complementary benefits in the separation of higher mass proteins based on entropic, not enthalpic, processes, but tend to yield limited peak capacities. In this study, microbore columns packed with a novel trilobal polypropylene capillary-channeled polymer fiber were used in a reversed phase modality for the separation of polypeptides and proteins of molecular weights ranging from 1.4 to 660 kDa. Chromatographic parameters including gradient times, flow rates, and trifluoroacetic acid concentrations in the mobile phase were optimized to maximize resolution and throughput. Following optimization, the performance of the trilobal fiber column was compared to two commercial-sourced columns, a superficially porous C4-derivatized silica and size exclusion, both of which are sold specifically for protein separations and operated according to the manufacturer-specified conditions. In comparison to the commercial columns, the fiber-based column yielded better separation performance across the entirety of the suite, at much lower cost and shorter separation times.  相似文献   

17.
Reversed-phase ultra-performance liquid chromatography was used for biopolymer separations in isocratic and gradient mode. The gradient elution mode was employed to estimate the optimal mobile phase flow rate to obtain the best column efficiency and the peak capacity for three classes of analytes: peptides, oligonucleotides and proteins. The results indicate that the flow rate of the Van Deemter optimum for 2.1 mm I.D. columns packed with a porous 1.7 microm C18 sorbent is below 0.2 mL/min for our analytes. However, the maximum peak capacity is achieved at flow rates between 0.15 and 1.0 mL/min, depending on the molecular weight of the analyte. The isocratic separation mode was utilized to measure the dependence of the retention factor on the mobile phase composition. Constants derived from isocratic experiments were utilized in a mathematical model based on gradient theory. Column peak capacity was predicted as a function of flow rate, gradient slope and column length. Predicted peak capacity trends were compared to experimental results.  相似文献   

18.
An HETP equation for the capillary column is developed that takes into account the dependence of gaseous diffusion on pressure, the compressibility of the mobile phase, together with the unique relationship between mobile phase velocity, and the resistance to mass transfer in the stationary phase. The equation is used to develop a procedure for column optimization and expressions are derived that allow the optimum column radius and optimum column length to be calculated for a given fixed inlet pressure. It is shown that fast, simple separations are optimally achieved using relatively short small diameter columns. Conversely, optimum performance for the separation of complex mixtures requiring higher efficiencies requires the use of long columns with relatively large diameters.  相似文献   

19.
By combining separation efficiency data as a function of flow rate with the column permeability, the kinetic plot method allows to determine the limits of separation power (time vs. efficiency) of different chromatographic techniques and methods. The technique can be applied for all different types of chromatography (liquid, gas, or supercritical fluid), for different types of column morphologies (packed beds, monoliths, open tubular, micromachined columns), for pressure and electro‐driven separations and in both isocratic and gradient elution mode. The present contribution gives an overview of the methods and calculations required to correctly determine these kinetic performance limits and their underlying limitations.  相似文献   

20.
The optimum conditions for the purification of proteins by gradient elution in reversed-phase liquid chromatography were studied, with emphasis on the column length. Because of the strong dependence of the retention of proteins on the mobile phase composition, very short columns can be used successfully to perform analytical separations. A similar conclusion is extended to preparative separations. Columns with different lengths and diameters were used. The dependence of the loading capacity for touching band separation on the column length, diameter and volume was studied, in addition to the regeneration time between successive runs, the starting mobile phase composition and the necessary column efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号