共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2014,14(3):254-258
We fabricate a Cu2ZnSnS4 (CZTS) absorber layer, by using single step electrodeposition of CZTS precursor, deposited at −1.05 V, followed by high temperature annealing in a sulfur atmosphere. X-ray diffraction pattern indicates that the as-grown sample is amorphous in nature, and polycrystalline CZTS thin films with kesterite crystal structure have been obtained by sulfurization from 450 to 580 °C. Surface morphologies of the as-grown sample show some voids with agglomerated particles. After sulfurization, the morphologies of the annealed samples become more uniform, and dense. EDAX study reveals that the sulfurized samples are nearly stoichiometric, being Cu-rich and S-deficient in composition. The band gaps of the annealed samples are found to be in the range from 1.9 to 1.5 eV. 相似文献
2.
3.
Sawanta S. Mali Pravin S. Shinde Chirayath A. Betty Popatrao N. Bhosale Young Woo Oh Pramod S. Patil 《Journal of Physics and Chemistry of Solids》2012,73(6):735-740
Semiconducting Cu2ZnSnS4 (CZTS) material has been receiving a great technological interest in the photovoltaic industry because of its low-cost non-toxic constituents, ideal direct band gap as a absorber layer and high absorption coefficient. CZTS thin films have been successfully deposited onto the fluorine-doped tin oxide/glass (glass/FTO) substrates coated glass substrates using successive ionic layer adsorption and reaction (SILAR) method and investigated for photoelectrochemical conversion (PEC) of light into electricity. The best solar cell sample showed an open-circuit voltage of 390 mV, a short-circuit current density of 636.9 μA/cm2, a fill factor of 0.62 and an efficiency of 0.396% under irradiation of 30 mW/cm2. Preliminary results obtained for solar cells fabricated with this material are promising. 相似文献
4.
S.R. Chalana R. Vinodkumar I. Navas V. Ganesan V.P. Mahadevan Pillai 《Journal of luminescence》2012,132(4):944-952
Nanostructured zinc suplhide thin films are successfully deposited on quartz substrates using pulsed laser deposition (PLD) under different argon pressures (0, 5, 10, 15 and 20 Pa). The influence of argon ambience on the microstructural, optical and luminescence properties of zinc sulfide (ZnS) thin films is systematically investigated. The GIXRD data suggests rhombohedral structure for ZnS films prepared under different argon ambience. Self-assembly of grains into well-defined patterns along the y direction is observed in the AFM image of the film deposited under argon pressure 20 Pa. All the films show a blue shift in optical band gap. This can be due to the quantum confinement effect and less widening of conduction and valence band for the films with less thickness and smaller grain size. The PL spectra of the different films are recorded at excitation wavelengths 250 nm and 325 nm and the spectra are interpreted. The PL spectra of the films recorded at excitation wavelength 325 nm show intense yellow emission. The film deposited under an argon pressure of 15 Pa shows the highest PL intensity for excitation wavelength 325 nm. For the PL spectra (excitation at 250 nm), the highest PL intensity is observed for the film prepared under argon free ambience. In our study, 15 Pa is the optimum argon pressure for better crystallinity and intense yellow emission when excited at 325 nm. 相似文献
5.
In this work, the effect of laser pulse treatment on the optical properties of poly(methyl methacrylate) (PMMA) films has been studied experimentally. The second harmonic of a pulsed Nd:YAG laser at 532 nm and 6 ns pulse width with 10 Hz repetition rate was used to modify the surface of red-BS-dye-doped PMMA films. Samples were ablated with 50 and 100 laser pulses. Optical reflectance and transmittance spectra were obtained in the range of 200–2000 nm. The optical properties of the films were influenced by the pulse number significantly. The oscillator and dispersion energies of the films were determined using the Wemple-Didomenico model. The optical band gap energy was extracted using the Tauc method. Results show that the optical parameters of the films were changed significantly after laser treatment. 相似文献
6.
Aluminium-doped (Al = 0–5?wt.%) SnO2 thin films with low-electrical resistivity and high optical transparency have been successfully synthesized by pulsed laser deposition technique at 500 °C. Structural, optical and electrical properties of the as-deposited and post-annealed thin films were investigated. X-ray diffraction patterns suggest that the films transform from crystalline to amorphous state with increasing aluminium content. The root mean square (Rq) surface roughness parameter, determined by atomic force microscopy decreases upon annealing of the as-deposited film. While resistivity of the film is the lowest (9.49 × 10?4 Ω-cm) at a critical doping level of 1?wt.% Al, optical transparency is the highest (nearly 90%) in the as-deposited condition. Temperature dependence of the electrical resistivity suggests that the Mott’s variable range hopping process is the dominant carrier transport mechanism in the lower temperature range (40–135 K) for all the films whereas, thermally activated band conduction mechanism seems to account for conduction in the higher temperature region (200–300 K). 相似文献
7.
In this work, K-doped ZnO thin films were prepared by a sol–gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films. 相似文献
8.
The Cu2ZnSnS4 (CZTS) thin films have been electrochemically deposited on Mo-coated glass substrate from weak acidic medium (pH 4.5-5) at room temperature. The effect of complexing agent (tri-sodium citrate) on the structural, morphological and compositional properties of CZTS thin films has been investigated. The as-deposited and annealed thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM),EDAX and X-ray photoelectron spectroscopy (XPS) techniques for their structural, morphological, compositional and chemical properties, respectively. XRD studies reveal that the amorphous nature of as-deposited thin film changes into polycrystalline with kesterite crystal structure after annealing in Ar atmosphere. The film prepared without complexing agent showed well-covered surface morphology on the substrate with some cracks on the surface of the film whereas those prepared using complexing agent, exhibited uneven and slightly porous and some overgrown particles on the surface of the films. After annealing, morphology changes into the flat grains, uniformly distributed over the entire surface of the substrate. The EDAX and XPS study reveals that the films deposited using 0.2 M tri-sodium citrate are nearly stoichiometric. 相似文献
9.
Mohd Shkir Haider Abbas Ziaul Raza Khan 《Journal of Physics and Chemistry of Solids》2012,73(11):1309-1313
This work describes the physical properties of lead iodide (PbI2) thin films with different thicknesses that were deposited on ultrasonically cleaned glass substrates using a thermal evaporation technique at 5×10-6 torr. The initial material was purified by the zone refining technique under an atmosphere of argon gas. XRD analysis of the material demonstrates that the thin films were preferably oriented along the (001) direction. The size of the crystallites was calculated from the Scherer relation and found to be in the range of ~5–10 nm, with higher values being observed for increasing film thicknesses. The optical energy band gaps were evaluated and determined to belong to direct transitions. Because the band gap increased with decreasing film thickness, a systematic blue shift was observed. The surface morphologies of PbI2 films exhibited a clear increase in grain size with increasing film thickness. The photoluminescence and dc conductivity of the thin films are also discussed. 相似文献
10.
Effect of annealing on structural, optical and electrical properties of nanostructured Ge thin films
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase. 相似文献
11.
R.B. Kale 《Applied Surface Science》2005,252(4):929-938
Zinc selenide nanocrystalline thin films are grown onto amorphous glass substrate from an aqueous alkaline medium, using chemical bath deposition (CBD) method. The ZnSe thin films are annealed in air for 4 h at various temperatures and characterized by structural, morphological, optical and electrical properties. The as-deposited ZnSe film grew with nanocrystalline cubic phase alongwith some amorphous phase present in it. After annealing metastable nanocrystalline cubic phase was transformed into stable polycrystalline hexagonal phase with partial conversion of ZnSe into ZnO. The optical band gap, Eg, of as-deposited film is 2.85 eV and electrical resistivity of the order of 106-107 Ω cm. Depending upon annealing temperature, decrease up to 0.15 eV and 102 Ω cm were observed in the optical band gap, Eg, and electrical resistivity, respectively. 相似文献
12.
Sukhendu Jana Sayan Das Debasish De Utpal Gangopadhyay Prajit Ghosh Anup Mondal 《Applied Physics A: Materials Science & Processing》2014,114(3):965-972
The annealing effect on structural and optical properties of the Diamond-like Nanocomposite (DLN) thin film deposited on glass substrate by Plasma Assisted Chemical Vapor Deposition (PACVD) method has been investigated. The films were annealed at temperature ranging from 300 to 600 °C, with 100 °C interval for 9 minutes by rapid thermal process (RTP) under vacuum. The structural changes of the annealed films have been studied using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning Electron Microscope (SEM), and optical parameters have been determined using transmittance and reflectance spectra in UV-UIS-NIR range. The result shows that the refractive index increases gradually from 1.79 to 2.84 with annealing temperature due to out-diffusion of H by breaking Si–H and C–H bond leads to Si–C bond, i.e. more cross linking structure. In higher temperature range, graphitization also enhanced the refractive index. However, the optical band gap at up to 400 °C initially increases from 3.05 to 3.20 eV and then decreases due to graphitization. The film has a great potential to be used as anti-reflection coating (ARC) on silicon-based solar cell. 相似文献
13.
Molecular beam epitaxy (MBE) grown AlN thin layer on sapphire substrates have been implanted with Cr+ ions for various dose from 1013 to 1015 cm−2. The analyses were carried out by an X-ray diffractometer (XRD), Raman spectroscopy, a spectrophotometer and spectroscopic ellipsometry (SE) for structural and optical analyses. E2(high) and A1(LO) Raman modes of AlN layer have been observed and analyzed. The behavior of Raman shift and the variation in intensity and in peak width of Raman modes as a function of ions flux are explained on the basis of chromium substituting aluminum atom and implantation-induced lattice damage. Both Raman and X-ray analyses reveal that the incorporation of chromium atoms increases in the host lattice with the increasing of Cr ions fluence. The band gap energy was determined by using transmission spectra. It was found that the band gap energy decreases as the ion dose increases. The band gap of the unimplanted AlN is 6.02 eV and it decreases down to 5.92 eV for the Cr+-implanted AlN with a ion dose of 1×1015 cm−2. Optical properties such as optical constants of the samples were examined by using a spectroscopic ellipsometer. It was observed that the refractive index (n) decreases with the increasing of ion dose. 相似文献
14.
Nanostructured ZnO:Mn thin films have been prepared by sol–gel dip coating method. The content of Mn in the sol was varied from 0 to 12 wt%. The effect of Mn concentration on the optical, structural, and morphological properties of ZnO thin films were studied by using Fourier Transform Infrared (FTIR), UV–visible and photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD results showed that the films have hexagonal wurtzite structure at lower content of Mn. The diffraction peaks corresponding to ZnO disappeared and two diffraction peaks of MnO2 and Mn3O4 appeared at the highest value of doping concentration (viz., 12 wt%). SEM results revealed that the surface smoothness of the films improved at higher content of Mn. The optical band gap of the films decreased from 3.89 to 3.15 eV when the Mn concentration increased from 0 to 12 wt%. The PL spectra of the films showed the characteristic peaks linked to band-to-band, green and yellow emissions. Besides, the PL intensity of the samples decreased with increase in Mn concentration. 相似文献
15.
We made Cu2ZnSnS4 (CZTS) thin films by sulfurization of Cu/Sn/Cu/Zn metallic films. Sulfurizations were carried out under different thermal annealing conditions, where maximum temperatures were 440 °C (LT-CZTS) and 550 °C (HT-CZTS). For LT-CZTS films, secondary phases such as SnS2 and Cu2?xS were observed, whereas for HT-CZTS films secondary impurities were not detected. Chemical composition of LT-CZTS film was observed to be very non-uniform. Highly Sn-rich and Zn-rich regions were found on the film surface of LT-CZTS. However, averaged chemical composition for larger area was close to stoichiometry. The HT-CZTS film showed homogeneous structural and chemical composition features. But, for HT-CZTS film, the Sn composition was observed to be decreased, which was due to the Sn-loss. By UV–Visible spectroscopy, optical band gaps of LT- and HT-CZTS films were measured to be ~1.33 eV and ~1.42 eV, respectively. The band gap of LT-CZTS film was also observed to be smaller by photoluminescence measurement. The depressed band gap of LT-CZTS film may be ascribed to some defects and low band gap impurities such as Cu2SnS3 and Cu2-xS in the LT-CZTS film. 相似文献
16.
Thermal evaporation technique was used to prepare NiTPP Thin films at room temperature. The prepared films were divided into two groups; the first group was as-deposited films, and the second group was irradiated in gamma cell type 60Co source at room temperature with total absorbed dose of 150 kGy in air. All films were identified by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) before and after exposed to gamma radiation. The spectrophotometric measurement of transmittance and reflectance were used to investigate the optical properties at normal incidence of light in the wavelength range 200–2500 nm for as-deposited and gamma-irradiated films. Optical constants (refractive index n, and absorption index k) of as-deposited and irradiated films have been obtained in the wavelength range 200–2500 nm for all the samples. The single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of the free charge carrier concentration to the effective mass (N/m?) were estimated for each group. The absorption analysis has been also performed to determine the type of electronic transition and the optical energy gap. 相似文献
17.
S. Venkatachalam Yoshinori Kanno D. Mangalaraj Sa.K. Narayandass 《Physica B: Condensed Matter》2007,390(1-2):71-78
Zinc Selenide (ZnSe) thin films were deposited onto well cleaned glass substrates using vacuum evaporation technique under a vacuum of 3×10−5 mbar. The prepared ZnSe samples were implanted with mass analyzed 75 keV B+ ions at different doses ranging from 1012 to 1016 ions cm−2. The composition, thickness, microstructures, surface roughness and optical band gap of the as-deposited and boron-implanted films were studied by Rutherford backscattering (RBS), grazing incidence X-ray diffraction, Atomic force microscopy, Raman scattering and transmittance measurements. The RBS analysis indicates that the composition of the as-deposited and boron-implanted films is nearly stoichiometric. The thickness of the as-deposited film is calculated as 230 nm. The structure of the as-deposited and boron-implanted thin films is cubic. It is found that the surface roughness increases on increasing the dose of boron ions. In the optical studies, the optical band gap value decreases with an increase of boron concentration. In the electrical studies, the prepared device gave a very good response in the blue wavelength region. 相似文献
18.
ZnSe thin films have been prepared by inert gas condensation method at different gas pressures. The influence of deposition pressure, on structural, optical and electrical properties of polycrystalline ZnSe films have been investigated using X-ray diffraction (XRD), optical transmission and conductivity measurements. The X-ray diffraction study reveals the sphalerite cubic structure of the ZnSe films oriented along the (1 1 1) direction. The structural parameters such as particle size [6.65-22.24 nm], strain [4.01-46.6×10−3 lin−2 m−4] and dislocation density [4.762-18.57×1015 lin m−2] have been evaluated. Optical transmittance measurements indicate the existence of direct allowed optical transition with a corresponding energy gap in the range 2.60-3.00 eV. The dark conductivity (σd) and photoconductivity (σph) measurements, in the temperature range 253-358 K, indicate that the conduction in these materials is through an activated process having two activation energies. σd and σph values decrease with the decrease in the crystallite size. The values of carrier life time have been calculated and are found to decrease with the reduction in the particle size. The conduction mechanism in present samples has been explained, and the density of surface states [9.84-21.4×1013 cm−2] and impurity concentration [4.66-31.80×1019 cm−3] have also been calculated. 相似文献
19.
Charita Mehta 《Applied Surface Science》2009,256(3):608-614
This paper presents the chemical bath deposition of zinc selenide (n-ZnSe) nanocrystalline thin films on non-conducting glass substrates, in an aqueous alkaline medium using sodium selenosulphate as Se2− ion source. The X-ray diffraction studies show that the deposited ZnSe material is nanocrystalline with a mixture of hexagonal and cubic phase. The direct optical band gap ‘Eg’ for the as-deposited n-ZnSe films is found to be 3.5 eV. TEM studies show that the ZnSe nanocrystals (NCs) are spherical in shape. Formation of ZnSe has been confirmed with the help of infrared (IR) spectroscopy by observing bands corresponding to the multiphonon absorption. We demonstrate the effect of the deposition temperature and reactant concentration on the structural, optical and electrical properties of ZnSe films. 相似文献
20.
Yue Zhao Mintao Zhou Zhao Li Zhiyong Lv Xiaoyan Liang Jiahua Min Linjun Wang Weimin Shi 《Journal of luminescence》2011,131(9):1900-1903
Polycrystalline ZnO thin films co-doped with Cu and N have been obtained by chemical bath deposition. Introduction of Cu and N causes the change of strained stress in ZnO films, which subsequently affects the structural and optical properties. The dependence of structural and optical properties of the ZnO films on lattice strained stress is investigated by XRD measurement, SEM, PL spectrum, optical reflection and Raman spectrum. The result of photoluminescence of Cu-N co-doped ZnO films indicates that the UV emission peaks shift slightly towards higher energy side with decrease in tensile strain and vise versa. The blue-shift of the absorption edge and up-shift of E2 (high) mode of the films can be observed in the optical reflection and Raman spectra. 相似文献