首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemical physics letters》2002,350(3-4):440-446
Surface-enhanced Raman scattering (SERS) spectra of pyridine adsorbed onto bare platinum and nickel electrodes in nonaqueous solutions are reported in this Letter. There are similarities and differences between the SERS from aqueous and nonaqueous solutions. The surface enhancement factor for platinum in acetonitrile solution has been calculated to decrease by a factor of ca. 10 compared with that in the aqueous media. The double-band character for the ring breathing mode is observed at 1009 and 1019 cm−1. Two adsorption modes of pyridine on the platinum surface were assumed. Part of the pyridine molecules may be chemisorbed onto the surface, with the ring plane oriented vertical to the surface; other pyridine molecules may co-adsorb with lithium cations onto the surface.  相似文献   

2.
Based on the first-principles computational method and the elastic scattering Green's func-tion theory, we have investigated the electronic transport properties of different oligothio-phene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.  相似文献   

3.
The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H+ reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.  相似文献   

4.
Highly disperse platinum film were vacuum-plasma-deposited onto titanium foil and gas-diffusion layers. The platinum deposits have complicated structure. By measuring hydrogen desorption peaks, the catalysts’ active specific surface area was determined and the roughness factor calculated. The electrochemical activity of the electrodes on gas-diffusion layers in the oxygen reduction and hydrogen oxidation reactions was determined. It was shown that the catalysts’ specific activity depends on the platinum content and the Nafion-ionomer additive. The high-activity electrodes were tested in Membrane Electrode Assemblies of low-temperature fuel cells.  相似文献   

5.
High voltage electrodes for electrophoresis have been integrated into a polymer layer that can be reversibly bound to glass microchips for electrophoretic separations. By using the liquid precursor to the polymer polydimethylsiloxane (PDMS), platinum electrodes and reservoirs can be positioned prior to solidification, providing a simple and flexible method for electrode interface construction. Field strengths up to 875 V cm(-1) over an 8 cm separation channel can be applied to the system without any loss in performance of the interface. The interface can function as an electro-fluidic interface between the high voltage power supply and the separation channel and, when reversibly sealed to an etched glass plate, functions as a cover plate establishing a hybrid PDMS-glass microchip in which the electrodes are directly integrated onto the device. The versatility of this approach is not only demonstrated by separating DNA fragments in a novel buffer sieving matrix, but also with the molecular diagnostic analysis of a variety of DNA samples for Duschenne Muscular Dystrophy and cytomegalovirus (CMV) infection, using both microchip interface configurations.  相似文献   

6.
Chong KF  Loh KP  Ang K  Ting YP 《The Analyst》2008,133(6):739-743
A whole-cell environmental biosensor was fabricated on a diamond electrode. Unicellular microalgae Chlorella vulgaris was entrapped in the bovine serum albumin (BSA) membrane and immobilized directly onto the surface of a diamond electrode for heavy metal detection. We found that the unique surface properties of diamond reduce the electrode fouling problem commonly encountered with metal electrodes. The cell-based diamond biosensor can attain a detection limit of 0.1 ppb for Zn(2+) and Cd(2+), and exhibits higher detection sensitivity and stability compared to platinum electrodes.  相似文献   

7.
Three oligothiophene dithiols with different numbers of thiophene rings (3, 6 or 9) have been synthesized and characterized. The X-ray single crystal structures of terthiophene 2 and sexithiophene 5 are reported herein to show the exact molecular lengths, and to explain the difference between their UV-visible spectra arising from the different packing modes. These dithiols with different chain lengths were then treated with 2-dodecanethiol-protected active gold nanoparticles (Au-NPs) by means of in situ thiol-to-thiol ligand exchange in the presence of 1 microm gap Au electrodes. Thus the molecular junctions composed of self-assembled films were prepared, in which oligothiophene dithiol-bridged Au-NPs were attached to two electrodes by means of Au-S bonded contacts. The morphologies and current-voltage (I-V) characteristics of these films were studied by SEM and AFM approaches, which suggested that the thickness of the films (3-4 layers) varied within the size of one isolated Au-NP and typical distance-dependent semiconductor properties could be observed. Temperature dependent I-V measurements for these molecular junctions were performed in which the films served as active elements in the temperature range 6-300 K; classical Arrhenius plots and subsequent linear fits were carried out to give the activation energies (deltaE) of devices. Furthermore, preliminary studies on the photoresponsive properties of these devices were explored at 80, 160, and 300 K, respectively. Physical and photochemical mechanisms were used to explain the possible photocurrent generation processes. To the best of our knowledge, this is the first report in which oligothiophene dithiols act as bridging units to link Au-NPs, and also the first report about functionalized Au-NPs exhibiting photoresponse properties in the solid state.  相似文献   

8.
The Clostridium acetobutylicum [FeFe]-hydrogenase HydA has been investigated as a hydrogen production catalyst in a photoelectrochemical biofuel cell. Hydrogenase was adsorbed to pyrolytic graphite edge and carbon felt electrodes. Cyclic voltammograms of the immobilized hydrogenase films reveal cathodic proton reduction and anodic hydrogen oxidation, with a catalytic bias toward hydrogen evolution. When corrected for the electrochemically active surface area, the cathodic current densities are similar for both carbon electrodes, and approximately 40% of those obtained with a platinum electrode. The high surface area carbon felt/hydrogenase electrode was subsequently used as the cathode in a photoelectrochemical biofuel cell. Under illumination, this device is able to oxidize a biofuel substrate and reduce protons to hydrogen. Similar photocurrents and hydrogen production rates were observed in the photoelectrochemical biofuel cell using either hydrogenase or platinum cathodes.  相似文献   

9.
The formation of ultra-thin metal deposits of copper on Pt(111) and polycrystalline platinum electrodes, as well as the adsorption of bisulfate on the copper-covered platinum surfaces, were studied by cyclic voltammetry and radioactive labeling. The highest charge obtained by voltammetry in the underpotential stripping range nearly corresponds to a close-packed monolayer of copper. The radioactive labeling data indicate that there are inactive and active copper adlayers toward bisulfate adsorption. The transition from inactive to active behavior is interpreted in terms of an increase in surface—bisulfate interactions at the expense of surface—perchlorate interactions. Based on recent X-ray absorption near-edge spectroscopy (XANES) analysis of copper deposition onto platinum, the site for bisulfate adsorption is most probably a Cu+ surface species. Combining this spectroscopic information with coulometry shows that an additional electron is confined to surface platinum atom(s) covered by the copper species. The copper film attains bulk copper properties when approximately 2.5 monolayers of copper are deposited.  相似文献   

10.
The electrodeposition of neutral benzyl viologen species (BV0) onto platinum and mercury electrodes from aqueous 0.1 M Na2SO4 solutions has been investigated by applying voltammetric and potentiostatic step techniques. It was found that the deposition of BV0 molecules occurs through direct nucleation onto the electrode surface and three-dimensional growth under mass transport control. The steady state nucleation rate was studied as a function of the overpotential, and the numbers of molecules in the critical nuclei on the different substrates were obtained.  相似文献   

11.
Tay ET  Law WS  Sim SP  Feng H  Zhao JH  Li SF 《Electrophoresis》2007,28(24):4620-4628
A newly developed conductivity detector, the floating resistivity detector (FRD), for microchip electrophoresis was introduced in this work. The detector design permits decoupling of the detection circuit from the high separation voltage without compromising separation efficiency. This greatly simplifies the integration of microchip electrophoresis systems. Its method of detection relies on platinum electrodes being dipped in two buffer-filled branched detection probe reservoirs on the microchip device. In this way, analytes passing through the detection window will not pass through and subsequently adsorb onto the electrodes, alleviating problems of electrode fouling due to analyte contamination and surface reactions. A customized microchip design was proposed and optimized stepwise for the new FRD system. Each branched detection probe was determined to be 4.50 mm long with a 0.075 mm detection window gap between them. The distance between the detection window and buffer waste reservoir was determined to be 1.50 mm. The optimized microchip design was subsequently used in the analysis of four groups of analytes - inorganic cations, amino acids, aminoglycosides antibiotics, and biomarkers. Based on the preliminary results obtained, the detection limits were in the range of 0.4-0.7 mg/L for the inorganic cations and 1.5-15 mg/L for the amino compounds.  相似文献   

12.
Russian Journal of Applied Chemistry - Electrolytic recovery of platinum metals onto electrodes of fibrous carbon materials from solutions formed by processing of copper–nickel ores, gold-...  相似文献   

13.
The oxidation of CO on platinum electrodes in an acid solution was studied with the conventional electro-chemical methods and the on-line electrochemical mass spectroscopy. It was found that this reaction is strongly determined by the surface morphology of platinum. The pretreatment of platinum electrodes can change the surface properties dramatically, in consequence it can improve the electrocatalytic activity towards the electrooxidation of CO. The existence of surface active sites on the roughened platinum electrodes can be used to explain its high electrocatalysis towards the oxidation of CO.  相似文献   

14.
The topography of platinum electrodes produced by electrodeposition (19 to 200 mC cm-2) on highly oriented pyrolytic graphite (HOPG) under different potential modulations was investigated by atomic force microscopy, scanning tunneling microscopy, and H-atom electrosorption voltammetry. To modulate electrodeposition, (i) triangular potential cycling at 0.1 V s-1, (ii) a linear cathodic potential at 0.1 V s-1 and anodic potential step cycling, and (iii) square wave potential cycling at 5000 Hz were utilized. AFM and STM imaging showed that at lower platinum loading the HOPG surface was partially covered by a 3D sublayer of platinum. Electrodes produced by procedure (i) were made of faceted platinum aggregates of about 200 nm and nanoclusters in the range of 5-20 nm; those that resulted from procedure (ii) consisted of anisotropic aggregates of nanoclusters arranged as quasi-parallel domains. These electrodes from (i) and (ii) behaved as fractal objects. The electrodes resulting from procedure (iii) exhibited a flat surface that behaved as a Euclidean object. For all WEs, as the platinum loading was increased the HOPG surface was fully covered by a thin 3D layer of platinum aggregates produced by electrodeposition and coalescence phenomena. Large platinum loading led to electrodes with fractal geometry. Statistical parameters (root-mean-square height, skewedness, kurtosis, anisotropy, Abbot curve, number of protrusions and valleys, and fractal dimension) were obtained from the analysis of AFM and STM imaging data. Platinum electrodeposition coupled to either H-adatom formation for procedures (i) and (ii) or phonon dispersion for (iii) was involved in the surface atom rearrangements related to electrofaceting. The H-adatom electrosorption voltammetry data were used to evaluate the real electrode surface area via the voltammetric charge and to advance a tentative explanation of the contribution of the different crystallographic facets to the global electrochemical process dominated by weak H-Pt adsorption interactions.  相似文献   

15.
We have developed a photochemical cell using a combination of photosynthetic electron transport (photosystem I particles) and the photoreduction of a dye such as flavin mononucleotide (FMN) (6). The overall power conversion efficiency depends on the rate of charge transfer across the electrode surfaces in addition to the efficiency of the photosynthetic and photochemical reactions. For this reason, we studied the effect of varying the nature of the electrodes on the power developed. We found that reticulated vitreous carbon electrodes showed higher power conversion efficiencies than did nickel mesh, platinum, or SnO2 glass. There are two reasons for this. First, the ratio of actual to apparent surface area is greater for RVC electrodes than for the others. Second, FMN and its photoproducts react better with carbon than platinum electrodes. Substituting RVC electrodes for platinum increased the power conversion efficiency from 1.0 to 3.9%. Platinizing platinum, nickel mesh, or brass electrodes also increased the power developed. However, the photopotential remained stable for several hours only for the platinized platinum electrodes.  相似文献   

16.
Novel gold nanoparticles modified with a mixed self-assembled monolayer of porphyrin alkanethiol and short-chain alkanethiol were prepared (first step) to examine the size and shape effects of surface holes (host) on porphyrin-modified gold nanoparticles. The porphyrin-modified gold nanoparticles with a size of about 10 nm incorporated C60 molecules (guest) into the large, bucket-shaped holes, leading to the formation of a supramolecular complex of porphyrin-C60 composites (second step). Large composite clusters with a size of 200-400 nm were grown from the supramolecular complex of porphyrin-C60 composites in mixed solvents (third step) and deposited electrophoretically onto nanostructured SnO2 electrodes (fourth step). Differences in the porphyrin:C60 ratio were found to affect the structures and photoelectrochemical properties of the composite clusters in mixed solvents as well as on the SnO2 electrodes. The photoelectrochemical performance of a photoelectrochemical device consisting of SnO2 electrodes modified with the porphyrin-C60 composites was enhanced relative to a reference system with small, wedged-shaped surface holes on the gold nanoparticle. Time-resolved transient absorption spectroscopy with fluorescence lifetime measurements suggest the occurrence of ultrafast electron transfer from the porphyrin excited singlet states to C60 or the formation of a partial charge-transfer state in the composite clusters of supramolecular complexes formed between porphyrin and C60 leading to efficient photocurrent generation in the system. Elucidation of the relationship between host-guest interactions and photoelectrochemical function in the present system will provide valuable information on the design of molecular devices and machines including molecular photovoltaics.  相似文献   

17.
Electrooxidation of alcohols including methanol, ethanol, and isopropanol is studied on the modified solid glassy carbon electrodes with various amounts of platinum nanoparticles (PtNPs) immobilized on a composite of functionalized multi-walled carbon nanotubes (MWCNTs) and chitosan in an acidic solution. Here the chitosan is available as a binder to tightly anchor Pt nanoparticles onto the MWCNTs surfaces. MWCNTs/chitosan composite support can significantly improve the activity of the catalyst for alcohol oxidation and reduce the Pt catalyst loading. The calculated electrochemical active surface area is 379.2 m2/g Pt for PtNP–MWCNT/chitosan. Cyclic voltammetry and chronoamperometry techniques are employed for catalytic activity evaluation. The effects of operational parameters including platinum loading, concentration of the corresponding alcohol, concentration of the acid solution, scanning rate, and the final limit of anodic potential on the performance of the electrodes are also investigated.  相似文献   

18.
Thiazine and phenazine dyes are known to exhibit photoredox behavior in the excited states of these molecules. These dyes are covalently attached to macromolecules, and the photochemistry has been investigated in homogeneous solution and as thin films coated onto electrodes. Flash photolysis of the macromolecular thionine in the presence of quenchers shows reduction of the dye and the subsequent disproportionation of the reduced dye. In the case of macromolecular thionine, evidence for the formation of a complex between ferrous ion and thionine is observed in the flash photolysis experiments. Photoelectrochemical studies show a new type of behavior for the macromolecular dye films coated onto electrodes. Macromolecular thionine film coated onto platinum electrode makes the electrode a cathode on illumination of the electrode. Macromolecular phenosafranine dye films coated onto electrodes change the polarity of the illuminated electrode depending upon the nature of the macromolecule.  相似文献   

19.
Nafion and montmorillonite clay adsorbed methylene blue coated onto platinum electrode were prepared. These dye modified electrodes were used as photoelectrodes in a photogalvanic cell in the presence of Fe2+ ions. The photoelectrochemical investigations showed that the dye coated electrodes behaved as cathode upon irradiation whereas the plain platinum electrode dipped in a homogeneous solution containing methylene blue and Fe2+ ions behaved as anode. It is suggested that the intermediate complex formed between the photoreduced methylene blue and ferric ion lead to the reductive reaction at the coated electrode.  相似文献   

20.
A study on the electrooxidative polymerization of pyrrole onto polyurethane-coated platinum electrodes and the electrochemical properties of the composite polyurethane/polypyrrole films (PU/PPy) as-prepared is presented. It is found that polypyrrole grows layer by layer from the polyurethane/platinum interface through the polyurethane matrix, and ca. 20 wt.% of polypyrrole will fill up the matrix. Cyclic voltemmograms show that the composite films are porous, and the reduction-reoxidation (redox) rate of the composite films is limited by the diffusion of counteranions through the films. Larger anion size leads to slower diffusion process. The composite films can also act as modified electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号