首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoluminescence properties in UV and N-UV excitable range for the phosphors of Na2La2B2O7: RE (RE=Eu, Tb, Ce, Sm, Gd) are investigated. The solution combustion synthesis technique was employed for the synthesis of the phosphors Na2La2B2O7: RE. The photoluminescence measurements of the phosphors were carried out on a HITACHI F7000 Fluorescence Spectrophotometer. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Na2La2B2O7: Eu are 591 and 615 nm, Na2La2B2O7: Ce shows dominating emission peak at 387 nm and Na2La2B2O7: Tb displays green emission at 493, 544, 593 and 620 nm at 254 nm excitation, while Na2La2B2O7: Sm shows the main emission peak wavelengths 566 and 604 nm at 405 nm excitation and Na2La2B2O7: Gd shows dominating emission peak at 312 nm at 274 nm excitation. These phosphors may provide a new kind of luminescent materials under ultraviolet and near ultraviolet excitation for various applications.  相似文献   

2.
Recently, in contrast to the general consensus, there has been accumulating evidence indicating a series of parent compounds T′-RE2CuO4 [RE = Pr, Nd, Sm, Eu, and Gd] prepared by metal–organic decomposition show superconductivity with Tc even exceeding 30 K [O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, M. Naito, Phys. Rev. B 79 (2009) 100508(R) [1]]. Here, we report the preparation of superconducting films of T′-RE2CuO4 by MBE with a post-reduction process. Using the MBE-grown films, we also performed photoemission experiments, the results of which suggest the superconducting carriers in the parent compounds arise not from accidental doping but from their intrinsically metallic nature.  相似文献   

3.
The crystal structure and magnetic properties of quaternary rare-earth intermetallic borides R3Co29Si4B10 with R=La, Ce, Pr, Nd, Sm, Gd and Dy have been studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in a tetragonal crystal structure with the space group P4/nmm. Compounds with R=La, Ce, Pr, Nd and Sm are ferromagnets, while ferrimagnetic behavior is observed for R=Gd and Dy. The Curie temperatures vary between 149 K and 210 K. The Curie temperatures in R3Co29Si4B10 (R=Ce, Pr, Nd, Sm, Gd, Dy) compounds are roughly proportional to the de Gennes factors.  相似文献   

4.
Microstructure and magnetic properties of melt-spun nanocomposite magnets with nominal compositions of (Nd1−xPrx)9Fe86B5 (x=0–1) were investigated. Substitution of Nd by Pr could significantly improve the hard magnetic properties of the nanocomposite magnets; the intrinsic coercivity (iHc) and the maximum magnetic energy product ((BH)max) increase from 414 kA/m and 124 kJ/m3 for x=0 to 493 kA/m and 152 kJ/m3 for x=0.6, respectively. Further substituting Nd by Pr (x>0.6) strongly weakens exchange-coupling interaction between magnetically hard and soft phases.  相似文献   

5.
Magnetization studies show that nonsuperconducting RSr2Ru1−xCuxO6 (R=Eu and Gd) compounds are magnetically ordered below TN=31 K regardless of R and Cu concentration. The magnetic ordering is due to the Ru sublattice. Mössbauer effect studies reveal that the Ru magnetism induces a magnetic moment (0.35 μB) and a magnetic hyperfine field (270 kOe) in the otherwise nonmagnetic Eu3+ ions, and that the Ru magnetization lies in the basal plane.  相似文献   

6.
Ln(OH)3 (Ln=La, Pr, Nd, Sm, Eu, Gd) nanorods are synthesized without using any surfactants or templates at room temperature. The as-obtained nanorods are within 4–25 nm in diameter and up to 200 nm in length. The most important improvement is that the aspect ratio of the obtained nanorods can be effectively controlled by adjusting the reaction time and pH value of the reaction system. The as-synthesized nanorods are characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It is interesting to find that both the inherent crystal structure of light lanthanide hydroxide and the chemical potential affect the formation of nanorods. The photoluminescence (PL) instrument is used to investigate the optical properties of the Eu(OH)3 nanorods and its abnormal luminescence behaviors are observed.  相似文献   

7.
We report measurements of magnetic, thermal and transport properties of single crystals of rare-earth dibismites RBi2 (R=La–Nd, Sm), grown via self-flux method. All compounds are good metals, and those with magnetic ions order antiferromagnetically at low temperatures. Ce, Pr and Sm members of the series show single magnetic transition whereas NdBi2 most likely exhibits two magnetic transitions. Significant magnetic anisotropy and a series of metamagnetic transitions in fields up to 55 kG are found in PrBi2. Ordering temperatures range from 3 K to just above 16 K and they scale well with the de Gennes factor.  相似文献   

8.
The influence of a Ni deficit in the nickel sublattice on the electronic and magnetic properties of PrNi2−xSb2 compound is investigated. The band structure is calculated using the LMTO method for x=0, 0.50, 1.0 and 1.5. At T=0 K the compound is antiferromagnetic with a magnetic moment on Pr close to 2.0 μB.  相似文献   

9.
We have performed a first principle study of structural and phase stabilization of β-La2 ? xLxMo2O9 (L = Gd, Sm, Nd and Bi) and β-La2Mo2 ? yMyO9 (M = Cr, W). The substitutional-site properties were discussed in terms of the empirical parameter, bond valence sums (BVS), which characterizes the interactions between atoms and its nearest-neighbor atoms and correlates well with the stability of the structure. We found that Gd, Sm and Nd atoms prefer the crystallographic sites with largest BVS values. The nonlinear dependence of cell parameter on W content in W-doped systems results from the nonlinear change in Mo/W–O bond length with W content. The decrease of cohesive energy and the deviation of BVS values from the expected values upon the Gd, Sm, Nd and W-doped concentration help us understand the experimentally observed stabilization of the β phase to lower temperatures in these doped system. The O ion diffusion properties in W-doped systems have been studied using the nudged elastic band method and the dimer method. We found that, W-doping leads to the obvious increase in the energy barriers of O ion concerted diffusion. In addition, there is a remarkable decrease in the difference of energy barriers between two diffusion channels involving O(1) ion, which sheds light on only one relaxation peak in the mechanical relaxation measurement in W-doped system, compared to undoped system.  相似文献   

10.
11.
Four new ternary boride systems with the CeCo3B2-type structure are reported with the general formulae: MRu3B2 (M = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Th or U), MRh3B2 (M = La, Ce, Pr, Nd, Sm, Eu or Gd), MOs3B2 (M = Lu or U) and MIr3B2 (M = La, Th or U). Most members of these systems were found to become either superconducting or magnetically ordered. The structure and properties of these materials are discussed in relation to those of other ternary systems previously reported to exhibit superconductivity and/or magnetic order.  相似文献   

12.
《Solid State Ionics》2006,177(1-2):73-76
Ionic conduction in fluorite-type structure oxide ceramics Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) at temperature 400–800 °C was systematically studied under wet hydrogen/dry nitrogen atmosphere. On the sintered complex oxides as solid electrolyte, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid states proton conducting cell reactor by electrochemical methods, which directly evidenced the protonic conduction in those oxides at intermediate temperature. The rate of evolution of ammonia in Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) is up to 7.2 × 10 9, 7.5 × 10 9, 7.7 × 10 9, 8.2 × 10 9 mol s 1 cm 2, respectively.  相似文献   

13.
We have studied the exchange coupling in two-phase nanocrystalline alloy ribbons of the composition Nd4−xSmxFe77.5B18.5 (x=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). The grain size of the Fe3B phase changed from 16 to 23 nm by annealing between 670°C and 760°C for 5 min. From the measurements of the magnetic properties and the reversibility of magnetization, we derived that the mean critical grain size of the Fe3B phase required for full exchange coupling by the Nd2Fe14B phase is about 20 nm. A detailed study of the magnetization-reversal process was made on samples in which the magnetocrystalline anisotropy of the Nd2Fe14B phase was reduced by substitution of Sm for Nd. We showed that the exchange-coupled range can be markedly expanded and that the reduced remanence can be increased with increasing Sm content.  相似文献   

14.
The superconducting R1.4Ce0.6RuSr2Cu2O10  δ(R = Sm, Eu and Gd) withTc  28, 32 and 42 K are also magnetically ordered atTN  220, 122 and 180 K, respectively, thus,TN  Tc. This is in contrast to intermetallic magnetic superconductors (such as RNi2B2C) in whichTc  TN. Magnetic susceptibility and Mossbauer spectroscopy show that superconductivity is confined to the CuO2planes, whereas magnetism is due to the Ru sublattice. Irreversibility phenomena and magnetic anomalies, observed at low magnetic fields originate from antisymmetric exchange coupling of the Dzyaloshinsky–Moria type, and from spin reorientation of the Ru moments. The shielding fraction is about 100%, supporting the conclusion that the materials consist of a single phase, manifesting both magnetism and superconductivity at once.  相似文献   

15.
We perform first-principles calculation to investigate electronic and magnetic properties of Co-doped WSe2 monolayer with strains from −10% to 10%. We find that Co can induce magnetic moment about 0.894 μB, the Co-doped WSe2 monolayer is a magnetic semiconductor material without strain. The doped system shows half-metallic properties under tensile strain, and the largest half-metal gap is 0.147 eV at 8% strain. The magnetic moment (0.894 μB) increases slightly from 0% to 6%, and jumps into about 3 μB at 8% and 10%, which presents high-spin state configurations. When we applied compressive strain, the doped system shows a half-metallic feature at −2% strain, and the magnetic moment jumps into 1.623 μB at −4% strain, almost two times as the original moment 0.894 μB at 0% strain. The magnetic moment vanishes at −7% strain. The Co-doped WSe2 can endure strain from −6% to 10%. Strain changes the redistribution of charges and magnetic moment. Our calculation results show that the Co-doped WSe2 monolayer can transform from magnetic semiconductor to half-metallic material under strain.  相似文献   

16.
《Solid State Ionics》2006,177(19-25):1929-1932
A2−αA′αMO4 (A = Pr, Sm, A′ = Sr, M = Ni, Mn) with K2NiF4-type structure were synthesized by solid reaction. Their chemical stability, electrical conductivity and thermal expansion behavior as well as cathodic polarization were investigated in relation to the cathode of SOFC. The results showed that A2−αA′αMO4 exhibited a low reactivity with yttria stabilized zirconia (YSZ) electrolyte. The thermal expansion coefficient (TEC) values were changed with the ionic radius of A. The specific conductivities of the nickelates were higher than those of manganites. While the nickelates showed a lower cathodic polarization in comparison with manganites.  相似文献   

17.
J.-H. Kim  A. Manthiram 《Solid State Ionics》2009,180(28-31):1478-1483
Perovskite-related intergrowth oxides Sr2.7Ln0.3Fe1.4Co0.6O7 ? δ (Ln = La, Nd, Sm, and Gd) have been investigated as cathode materials for solid oxide fuel cells (SOFC). With decreasing size of the Ln3+ ions, the unit cell volume, oxygen content, thermal expansion coefficient (TEC), and total electrical conductivity decrease from Ln = La to Gd. The decreasing unit cell volume and oxygen content is attributed to the decreasing size of Ln3+ ions from Ln = La to Gd and a consequent preference for lower coordination numbers. While the decrease in the ionicity of the Ln–O bonds from Ln = La to Gd causes a decrease in the TEC, the increasing amount of oxygen vacancies leads to a decrease in electrical conductivity arising from a thermally activated semiconducting behavior. The cathode polarization conductance (Rp? 1) measured using the ac-impedance spectroscopy and the catalytic activity for the oxygen reduction reaction in SOFC decrease from Ln = La to Gd partly due to the decrease in electrical conductivity.  相似文献   

18.
Electronic band structures of GaNxAs1−xyBiy dilute nitrides–bismides have been determined theoretically within the framework of the band anticrossing (BAC) model and k  p method. We have developed computer codes based on our extended BAC model, denoted (16 × 16), in which the dimension of the used states basis was equal to 16. We have investigated the band gap and the spin orbit splitting as a function of Bi composition for alloys lattice matched to GaAs. We have found that the substitution of As element by N and Bi impurities leads to a significant reduction of band gap energy by roughly 198 meV/%Bi. Meanwhile, spin orbit splitting increases by 56 meV/%Bi regardless N content. There is an excellent agreement between the model predictions and experiment reported in the literature. In addition, alloys compositions and oscillator strengths of transition energies have been calculated for GaNAsBi alloys which represent active zone of temperature insensitive (1.55 μm and 1.3 μm) wavelength laser diodes intended for optical fiber communications. A crossover at about 0.6 eV has occurred between Eg and Δso of GaN.039As.893Bi.068. When the quaternary is lattice mismatched to GaAs, resonance energy increases with Bi content if N content decreases. On the other hand, effective mass behavior of carriers at Γ point has been discussed with respect to alloy composition, k-directions and lattice mismatch.  相似文献   

19.
Lanthanide tungstates, Ln2W2O9 (Ln=La, Pr, Nd, Sm, and Gd), were prepared via the polymerized complex method at 1273 K for 2 h, and their photocatalytic activities for hydrogen and oxygen evolution were investigated. Pt-loaded Gd2W2O9 exhibited activity for H2 evolution from an aqueous methanol solution under light irradiation (λ>300 nm). The remaining Ln2W2O9 were inactive for H2 evolution due to the influence of the Ln elements and their crystal structures. All Ln2W2O9 were inactive for O2 evolution from an aqueous AgNO3 solution due to the lack of O2 evolution sites on the surface.  相似文献   

20.
We review neutron scattering investigations of the crystal structures, magnetic structures, and spin dynamics of the iron-based RFe(As, P)(O, F) (R = La, Ce, Pr, Nd), (Ba,Sr,Ca)Fe2As2, and Fe1+x(Te–Se) systems. On cooling from room temperature all the undoped materials exhibit universal behavior, where a tetragonal-to-orthorhombic/monoclinic structural transition occurs, below which the systems become antiferromagnets. For the first two classes of materials the magnetic structure within the ab plane consists of chains of parallel Fe spins that are coupled antiferromagnetically in the orthogonal direction, with an ordered moment typically less than one Bohr magneton. Hence these are itinerant electron magnets, with a spin structure that is consistent with Fermi-surface nesting and a very energetic spin wave bandwidth ~0.2 eV. With doping, the structural and magnetic transitions are suppressed in favor of superconductivity, with superconducting transition temperatures up to ≈55 K. Magnetic correlations are observed in the superconducting regime, with a magnetic resonance that follows the superconducting order parameter just like the cuprates. The rare earth moments order antiferromagnetically at low T like ‘conventional’ magnetic superconductors, while the Ce crystal field linewidths are affected when superconductivity sets in. The application of pressure in CaFe2As2 transforms the system from a magnetically ordered orthorhombic material to a ‘collapsed’ non-magnetic tetragonal system. Tetragonal Fe1+xTe transforms to a low T monoclinic structure at small x that changes to orthorhombic at larger x, which is accompanied by a crossover from commensurate to incommensurate magnetic order. Se doping suppresses the magnetic order, while incommensurate magnetic correlations are observed in the superconducting regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号