首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bonville  P.  Hodges  J. A.  Bertin  E.  Bouchaud  J.-Ph.  Dalmas de Réotier  P.  Regnault  L.-P.  Rønnow  H. M.  Sanchez  J.-P.  Sosin  S.  Yaouanc  A. 《Hyperfine Interactions》2004,159(1-4):103-108
An orientational disorder of the cation in [(PyO)D][AuCl4] crystal was investigated by the 35Cl NQR and 1H NMR measurements. A structural phase transition was found at ca. 70 K from the temperature dependence of the NQR frequencies both in [(PyO)D][AuCl4] and [(PyO)H][AuCl4]. Temperature dependence of the spin-lattice relaxation time T 1 of the NQR of [AuCl4] could be interpreted by an electric field gradient modulation due to the motion of the cation. Characteristics of T 1 of 35Cl NQR as well as that of 1H NMR suggest a dynamic orientational disorder of the cation.  相似文献   

2.
We have investigated the molecular motions of TRIS+ ([(CH2OH)3CNH3]+) and ions in the [(CH2OH)3CNH3]2SiF6 crystal below room temperature from the measurements of the spin-lattice relaxation time T1 and the NMR absorption line of 1H and 19F nuclei, in order to elucidate the changes of the molecular motions by the phase transition of Tc=178 K. The narrowing of the 19F-NMR line was observed around Tc=178 K and the reorientation of the anion appears above Tc. Moreover, from the analysis of the temperature dependence of T1, we have observed that the activation energy of the reorientational motion of ions changes from 0.168 eV (T>Tc) to 0.185 eV (T<Tc). Based on these results, we found that the reorientational motion of ions is closely related to the origin of the phase transition at Tc. In addition, from the measurement of the 1H-NMR line, we also found that the reorientational motion of H2 in the -CH2OH group becomes active accompanied by the phase transition.  相似文献   

3.
Heat capacity study was performed, for the first time, for [MnF4TPP][TCNE]·0.5MeOH and [Mn(OC14H29)4TPP][TCNE]·MeOH complexes in the 1.8-100 K temperature range under the 0-9 T magnetic field and disclosed new aspects inherent in such strongly coupled charge-transfer Mn-porphyrin-TCNE linear chain systems, where TPP=5,10,15,20-tetraphenylporphyrinato, TCNE=tetracyanoethylene and MeOH=methanol. Any heat capacity anomaly due to the onset of the magnetic long-range-order was not detected, whereas the magnetic phase transition has clearly been observed around 20 K by previous magnetic studies. As these materials are well approximated by quasi-one-dimensional ferrimagnetic Heisenberg chains with very large intrachain spin-spin interactions, the most part of the magnetic entropy is retained above the phase transition temperature as the dominant short-range order. This is the reason why no magnetic phase transition was detected by calorimetry. On the other hand, the big effect observed in the magnetic susceptibility is well accounted for if the formation of magnetic domains is assumed in the crystal.  相似文献   

4.
Heat capacity of two rare-earth orthoferrites HoFeO3 and LuFeO3 were measured between 1.8 and 200 K. A distinctly large and two small heat capacity anomalies were detected for HoFeO3 under zero magnetic field around 3.3, 53 and 58 K, respectively. The low-temperature anomaly with a peak at 3.3 K is due to the ordering of Ho3+ ions and the estimated magnetic entropy for this transition was favorably compared with the expected (R ln 2). Application of magnetic field significantly affects the positions and the magnitudes of the anomaly at 3.3 K. Energies of low-lying levels of the lowest J-term of Ho3+ ion were roughly estimated through analysis of the Schottky heat capacity.  相似文献   

5.
We have investigated the magnetic and transport properties of a new ternary intermetallic compound Pr2Pd3Si5 which forms in U2Co3Si5-type orthorhombic structure (space group Ibam). At low field (0.01 T) magnetic susceptibility exhibits an abrupt increase below 7 K and peaks at 5 K, revealing a magnetic phase transition. The onset of magnetic order is also confirmed by well defined anomalies in the specific heat and electrical resistivity data. Apart from the sharp λ-type anomaly, magnetic part of specific heat also shows a broad Schottky-type hump due to crystal field effect. Magnetoresistance data as a function of temperature exhibits a pronounced peak in paramagnetic state which could be interpreted in terms of crystal field effect and short-range ferromagnetic correlations.  相似文献   

6.
New triethylammonium salts: [(C2H5)3NH]SbCl6 (TCA) and [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl (TCAT) have been synthesized. The compounds crystallise in monoclinic symmetry: space groups P21/n and P21/c, for TCA at 293 K and TCAT at 100 K, respectively. The crystal structure of [(C2H5)3NH]SbCl6 consists of discrete ionic pairs—triethylammonium cations and hexachloroantimonate anions—linked via the bifurcated N-H?Cl hydrogen bonds. The crystal structure of [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl is composed of three symmetrically independent triethylammonium cations, chlorine anion and two symmetrically independent hexachloroantimonate anions. TCA undergoes a structural phase transition at 336 K (on heating) into the orthorhombic C222 space group, whereas TCAT reveals a structural phase transition at 332 K. The phase transitions are of the first order type. TCA shows a ferroelastic domain structure below 336 K. Differential scanning calorimetry, dilatometric, dielectric dispersion and Raman scattering measurements have been used to study the phase transition mechanisms in these triethylammonium salts.  相似文献   

7.
Phase transitions of tetra(isopropylammonium)decachlorotricadmate(II) [(CH3)2CHNH3]4Cd3Cl10 crystal have been studied by infrared, far infrared and Raman measurements in wide temperature range, between 11 K and 388 K. The temperature changes of wavenumber, center of gravity, width and intensity of the bands were analyzed to clarify cationic and anionic contributions to the phase transitions mechanism. The results of investigation showed earlier by differential scanning calorimetry (DSC), thermal expansion and dielectric measurements clearly confirmed the sequence of phase transitions at T1=353 K, T2=294 K and T3=260 K. The current results derived from DSC and infrared measurements revealed additional phase transition at T4=120 K.  相似文献   

8.
La0.8Sr0.2Co1−xFexO3 (x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d5−α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ∼53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ∼70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣JCo–Co∣<∣JFe–Co∣<∣JFe–Fe∣.  相似文献   

9.
63,65Cu nuclear quadrupole resonance (NQR) was applied to study the natural mineral Cu12As4S13 (tennantite) in the temperature range 4.2–210 K. The obtained results point to the presence of field fluctuations caused by internal motions in tennantite. Consistently with the crystal structure, the experimental data can be described by an occurrence of a magnetic phase transition, which takes place near 65 K. The low-temperature phase is characterized by Cu(II) electron magnetic moments freezing in the form of a spin-glass-like constitution.  相似文献   

10.
Hg2Os2O7, which has the cubic pyrochlore structure, remains metallic down to the liquid helium temperature unlike its isostructural counterpart Cd2Os2O7, which shows metal-insulator transition at 226 K. Magnetization and heat capacity data for Hg2Os2O7 are presented. The magnetic anomaly at TN=88 K shares many characteristics in common with the metal-insulator transition in Cd2Os2O7, though Hg2Os2O7 remains metallic below TN. The heat capacity Cp shows no or very little change in the magnetic entropy around TN, supporting the view that there is no long-range ordering of localized spins. The measured value of electronic heat-capacity coefficient γ=21 mJ K−2mol−1 is comparable to the value obtained from band-structure calculation on Cd2Os2O7, suggesting that mass-enhancement is small in Hg2Os2O7. There is a pronounced peak in Cp/T3 at 13.1 K, which corresponds to a peak in the phonon density of states at 40 cm−1.  相似文献   

11.
Magnetic susceptibility, heat capacity and electrical resistivity measurements have been carried out on a new ruthenate, La2RuO5 (monoclinic, space group P21/c) which reveal that this compound is a magnetic semiconductor with a high magnetic ordering temperature of 170 K. The entropy associated with the magnetic transition is 8.3 J/mol K close to that expected for the low spin (S=1) state of Ru4+ ions. The low temperatures specific heat coefficient γ is found to be nearly zero consistent with the semiconducting nature of the compound. The magnetic ordering temperature of La2RuO5 is comparable to the highest known Curie temperature of another ruthenate, namely, metallic SrRuO3, and in both these compounds the nominal charge state of Ru is 4+.  相似文献   

12.
The proton NMR line width and spin-lattice relaxation times for LiNH4SO4 single crystal were studied at low temperature range of 6 and 280 K. The changes in the proton relaxation behavior near the phase transition temperature indicates a change in the state of internal motion at the transition. The molecular motions obtained by the spin-lattice relaxation processes were found to be determined by molecular reorientation of the NH4 ions in phases III, IV, and V. We also confirmed that the phase transitions occur at 26 and 133 K.  相似文献   

13.
The molecular susceptibility and paramagnetic shift of [N(CH3)4]2CoCl4 single crystals were measured, and from these experimental results we obtained the transferred hyperfine interaction, Hhf, due to the transfer of spin density from Co2+ ions to [N(CH3)4]+ ions. The transferred hyperfine interaction can be expressed as a linear equation, with Hhf increasing with increasing temperature. The remarkable change in Hhf near Tc5 (=192 K) corresponds to a phase transition. The proton spin-lattice relaxation times of [N(CH3)4]2CoCl4 single crystals were also investigated, and it was found that the relaxation process can be described by a single exponential function. The variation of the relaxation time with temperature undergoes a remarkable change near Tc5, confirming the presence of a phase transition at that temperature. From the above results, we conclude that the increase in Hhf with increasing temperature is large enough to allow the transfer of spin density between Co2+ ions and the nuclear spins of the nonmagnetic [N(CH3)4]+ ions in the lattice, and thus the increase in the relaxation time with temperature is attributed to an increase in the transferred hyperfine field.  相似文献   

14.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P=4.7 and 10.8 kbar, the temperature dependence of nuclear-spin-lattice relaxation rate (1/T1) measured at tetragonal phase show no coherence peak just below Tc and decrease with decreasing temperature. The superconductivity is of gapless at P=4.7 kbar but evolves to multiple gaps at P=10.8 kbar. We find that the superconductivity appears near a quantum critical point. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.  相似文献   

15.
We have studied the organic superconductor (TMTSF)2PF6 using 1H nuclear magnetic resonance. The spin-lattice (T1) and the spin-spin relaxation time (T2) measurements manifested a divergence associated with a structural phase transition at 160 K.  相似文献   

16.
Crystal structure of the 4-methylpyridinium tetrachloroantimonate(III), [4-CH3C5H4NH][SbCl4], has been determined at 240 K by X-ray diffraction as monoclinic, space group, P21/n, Z=8. Differential scanning calorimetry and dilatometric studies indicate the presence of two reversible phase transitions of first order type, at 335/339 and 233/289 K (cooling/heating) with ΔS=0.68 and 2.2 J mol−1 K−1, respectively. Crystal dynamics is discussed on the basis of the temperature dependence of the 1H NMR spin-lattice relaxation time T1 and infrared spectroscopic studies. The low temperature phase transition at 233 K of an order-disorder type is interpreted in terms of a change in the motional state of the 4-methylpyridinium cations. The phase transition at 335 K, probably of a displacive type, is characterised by a complex mechanism involving the dynamics of both the cationic and anionic sublattice. The 1H NMR studies show that the low temperature phase III is characterised only by the dynamics of the CH3 groups.  相似文献   

17.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

18.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

19.
Structural, magnetic, heat capacity, electrical and thermal transport properties are reported on polycrystalline Ba8Ni6Ge40. Ba8Ni6Ge40 crystallizes in a cubic type I clathrate structure with unit cell a=10.5179 (4) Å. It is diamagnetic with susceptibility χdia=−1.71×10-6 emu/g Oe. An Einstein temperature 75 K and a Debye temperature 307 K are estimated from heat capacity data. It exhibits n-type conducting behavior below 300 K. It shows high Seebeck coefficients (−111×10-6 V/K), low thermal conductivity (2.25 W/K m), and low electrical resistivity (8.8 mΩ cm) at 300 K.  相似文献   

20.
We have investigated the origin of the change in proton activity in the phase transition at TII-III (=369 K) in Cs3H(SeO4)2 from the viewpoint of its ferroelasticity by using 1H NMR and X-ray measurements. It is found that the second moment of the 1H NMR absorption line rapidly decreases at TII-III with increasing temperature. From this result, we conclude that the hopping motion of a proton, which is the precursor motion in the superprotonic phase, becomes more active above TII-III. This result is consistent with the fact that the electrical conductivity in phase II is larger than that in phase III. Furthermore, it is also found that the spontaneous strain decreases abruptly at TII-III. From these results, it is deduced that the decrease in the spontaneous strain at TII-III causes the increase in the proton activity at TII-III. In addition, it is deduced that the increase in proton activity and the decrease in the spontaneous strain at TII-III are closely related with the appearance of the superprotonic phase transition at TI-II (=456 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号