首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Poly(2‐hydroxyethyl methacrylate‐ethylene dimethacrylate) (PHEMA‐EDMA) beads were produced by free radical co‐polymerization of 2‐hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA). Then, metal complexing ligand alizarin yellow was covalently attached onto PHEMA‐EDMA beads. The resulting resin has been characterized by FT‐IR and studied for the preconcentration and determination of trace Pb(II) ion from solution samples. The optimum pH value for sorption of the metal ion was 5. The sorption capacity of functionalized resin is 100 mg.g‐1. The chelating resin can be reused for 20 cycles of sorption‐desorption without any significant change in sorption capacity. A recovery of 96% was obtained for the metal ion with 0.1 M nitric acid as eluting agent. The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir and Freundlich models. Based on equilibrium adsorption data the Langmuir and Freundlich constants were determined 2.571 and 418.7 at pH 5 and 25 °C. The method was applied for lead ions determination from well water sample.  相似文献   

2.
A new chelating resin was prepared by coupling Amberlite XAD-2 with Brilliant Green through an azo spacer. The resulting resin has been characterized by FTIR spectrometry, elemental analysis, and thermogravimetric analysis and studied for the preconcentration and determination of trace Pb(II) ions from solution samples. The anionic complex of Pb(II) and iodide was retained on the resin by the formation of an ion associate with Brilliant Green on Amberlite XAD-2 in weak acidic medium. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of the functionalized resin is 53.8 mg/g. The chelating resin can be reused for 20 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 103% was obtained for the metal ion with 0.1 M EDTA as the eluting agent. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The resin was subjected to evaluation through batch binding and column chromatography of Pb(II). The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir, Freundlich, and Temkin models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined to be 0.192, 13.189, and 3.418 at pH 5.5 and 25 degrees C. The method was applied for lead ion determination in tap water samples.  相似文献   

3.
In the present study, adsorption of Ni(II) and Pb(II) from aqueous solution was investigated using activated carbon synthesized with industrial wastewater sludge. The synthesized adsorbent was analyzed using nitrogen adsorption–desorption and Fourier transfer infrared (FTIR) techniques. Batch adsorption mode was used to evaluate the effect of solution pH, contact time, adsorbent dose, initial metal ion concentration, and temperature on the adsorption capacity of the synthesized adsorbent. The kinetic data were analyzed using different kinetic models. The pseudo-second-order equation gave the best fit to the experimental data for both metal ions. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models. The results showed that the data obtained for the Ni(II) and Pb(II) adsorption are in good agreement with the Langmuir model. The Langmuir mono-layer maximum adsorption capacities for Ni(II) and Pb(II) ions were estimated to be 74.06 and 88.76 mg g?1 at 25°C, respectively. In addition, the thermodynamic studies proved that the adsorption process of both metals could be considered endothermic.  相似文献   

4.
The sorption behaviour of Pb(II) ions onto activated carbon prepared from Citrus limettioides peel (CLPC) and seed (CLSC), which is a novel waste material, was evaluated as a function of contact time, pH, adsorbent dose, ionic strength, initial metal ion concentration and temperature in batch adsorption processes with raw Citrus limettioides peel (CLP) and seed (CLS). The maximum uptake of lead(II) ions was obtained at pH range 4.0–6.0 for CLPC, CLSC and 5.0–6.0 for raw materials (CLP, CLS). The optimal contact time was found to be 3 h. Surface morphology and functionality of the adsorbent were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and Fourier-transform infrared (FT-IR) spectroscopy. The equilibrium data fit well with the Langmuir isotherm, confirming monolayer coverage of lead(II) ions onto CLP, CLPC, CLS and CLSC. The Langmuir monolayer adsorption capacity of CLP, CLPC, CLS and CLSC was found to be 123.60, 166.67, 15.32 and 142.86 mg/g. The calculated thermodynamic parameters showed that the sorption process was feasible, spontaneous and exothermic in nature. Kinetic studies demonstrated that adsorption of lead(II) ions followed a pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorbents were tested for removal of Pb(II) from electroplating wastewater in connection with the reuse and selectivity of the adsorbents.  相似文献   

5.
The adsorptive removal of lead (II) from aqueous medium was carried out by chemically modified silica monolith particles. Porous silica monolith particles were prepared by the sol-gel method and their surface modification was carried out using trimethoxy silyl propyl urea (TSPU) to prepare inorganic–organic hybrid adsorbent. The resultant adsorbent was evaluated for the removal of lead (Pb) from aqueous medium. The effect of pH, adsorbent dose, metal ion concentration and adsorption time was determined. It was found that the optimum conditions for adsorption of lead (Pb) were pH 5, adsorbent dose of 0.4 g/L, Pb(II) ions concentration of 500 mg/L and adsorption time of 1 h. The adsorbent chemically modified SM was characterized by scanning electron microscopy (SEM), BET/BJH and thermo gravimetric analysis (TGA). The percent adsorption of Pb(II) onto chemically modified silica monolith particles was 98%. An isotherm study showed that the adsorption data of Pb(II) onto chemically modified SM was fully fitted with the Freundlich and Langmuir isotherm models. It was found from kinetic study that the adsorption of Pb(II) followed a pseudo second-order model. Moreover, thermodynamic study suggests that the adsorption of Pb(II) is spontaneous and exothermic. The adsorption capacity of chemically modified SM for Pb(II) ions was 792 mg/g which is quite high as compared to the traditional adsorbents. The adsorbent chemically modified SM was regenerated, used again three times for the adsorption of Pb(II) ions and it was found that the adsorption capacity of the regenerated adsorbent was only dropped by 7%. Due to high adsorption capacity chemically modified silica monolith particles could be used as an effective adsorbent for the removal of heavy metals from wastewater.  相似文献   

6.
The ability of polystyrene-alumina-activated carbon composite as a synthetic adsorbent was investigated for the removal of Pb(II) ions from aqueous solutions. Various physico-chemical parameters such as pH, initial metal ion concentration, adsorbent dosage and contact time were studied. The optimum solution pH for the maximum adsorption of Pb(II) was found to be 4. Kinetic data were best described by pseudo-second-order model. The adsorption process followed both Langmuir and Freundlich adsorption isotherms at 30 °C. Thermodynamic studies indicated that the adsorption was spontaneous and endothermic in nature. Desorption studies were carried out by batch and column operations and it was found that 97% Pb(II) could be recovered by the column process using 0.1 M HCl as eluent.  相似文献   

7.
In this work, the adsorption of Pb(II) from aqueous solution was investigated on various types of activated carbon fibers (ACFs) manufactured from polyacrylonitrile and phenolic resin. The textural and physicochemical properties of the ACFs were determined by the N2-BET method and acid-base titration. The experimental adsorption equilibrium data of Pb(II) on the ACFs were obtained in a batch adsorber, and the Langmuir isotherm model better fitted the experimental data. The effects of the type of ACF and precursor of ACF, solution pH and temperature upon the adsorption of Pb(II) on the ACFs were examined in detail. The adsorption capacity was highly dependent upon the precursor of ACF. The Pb(II) adsorption capacity of the ACFs augmented when the solution pH and temperature were increased from 2 to 4 and from 288 to 308 K, respectively. The effect of the pH was attributed to the interactions between the surface of the ACF and Pb2+ ions present in the water solution. The Pb(II) adsorption capacity of the ACFs was enhanced by oxidation with HNO3 solution and the enhancement factor was between 1.1 and 1.4. The reversibility of the adsorption of Pb(II) was investigated by first adsorbing Pb(II) on an ACF and then desorbing the Pb(II). It was noticed that Pb(II) was substantially desorbed from ACF while reducing the solution pH to 2. It was concluded that the Pb(II) was mainly adsorbed on the ACFs by chemisorption, electrostatic interactions and ion exchange.  相似文献   

8.
As one of the most toxic heavy metal ions, lead pollution has become an urgent problem. Here, a cubic crystal nanoparticle (Prussian blue analogue, PBA), referred to as potassium manganese ferrocyanide (KMFC) was synthesized and used as a highly-effective sorbent for removing Pb(II) from aqueous solution. KMFC is a mesoporous material that has excellent ion exchange properties, which was confirmed by a series of characterizations. This paper investigated the adsorptive attributes of KMFC for lead ions in aqueous solution. The influences of temperature, contact time and pH on adsorption were studied in batch experiments. The KMFC possessed a robust adsorption capacity for resident lead ions in aqueous solution, which attained 1075.27 mg g−1 at room temperature (25 °C), based on the Langmuir model, which was far higher than any previously reported values. The adsorption process was well fitted to a pseudo-second-order kinetic model, as well as Langmuir and Temkin isotherm models, and was endothermic and spontaneous on the basis of thermodynamic analysis. The adsorption of Pb(II) on the surface of KMFC started with electrostatic attraction, due to the electronegativity of KMFC. Further, ion exchange was the dominant mechanism in this adsorption process, which was confirmed by FTIR, XPS, and other supplementary experiments. The good chemisorption (K+ exchange) properties of KMFC suggested that it likely has excellent prospects in applications for heavy metal ions adsorption. This study not only provided a new perspective for the design and development of heavy metal sorbents but provided a deep insight into the mechanism of adsorption of heavy metal ions by PBA.  相似文献   

9.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

10.
In this study, experimental measurements have been made on the batch adsorption of cadmium and lead ions from aqueous solutions using poly(guanidine modified 2‐acrylamido‐2‐methylpropan sulfonic acid/acrylic acid/N‐vinylpyrrolidone/2‐Hydroxyethyl methacrylate), P(AMPSG/AAc/NVP/HEMA) hydrogels. The guanidyl end group bearing AMPSG monomer was synthesized from the reaction of AMPS and guanidine. The hydrogels were prepared by UV‐curing technique. The morphology of the dry H10‐hydrogel sample was examined by SEM. The influence of the uptake conditions, such as pH, functional monomer per cent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, was also tested. The selectivity of the hydrogel toward the different metal ions tested was Hg(II) > Pb(II) > Au(III) > Cd(II). The adsorption isotherm models were applied to the experimental data, and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Cd(II) and Pb(II) ions on P(AMPSG/AAc/NVP/HEMA) hydrogel. It was found that adsorbed lead and cadmium ions on P(AMPSG/AAc/NVP/HEMA) hydrogel can be effectively desorbed by acid leaching and the regenerated P(AMPSG/AAc/NVP/HEMA) hydrogel can be reused almost five times less without any loss of adsorption capacity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this study is to explain how clay minerals adsorb heavy metals individually and in the presence of humic acid, and to model heavy metal adsorption specifically based on surface-metal binary and surface-metal-ligand ternary complexation. The adsorption of Cu(II) and Pb(II) on kaolinite-based clay minerals has been modeled by the aid of the FITEQL3.2 computer program using single- and double-site binding models of the Langmuir approach. Potentiometric titrations and adsorption capacity experiments were carried out in solutions containing different concentrations of the inert electrolyte NaClO4; however, the modeling of binary and ternary surface complexation was deliberately done at high ionic strength (0.1 M electrolyte) for eliminating adsorption onto the permanent negatively charged sites of kaolinite. A "two-site, two pKa" model was adapted, and as for the two surface sites responsible for adsorption, it may be arbitrarily assigned that [triple bond]S1OH sites represent silanol and organic functional groups such as carboxyl having pKa values close to that of silanol, and [triple bond]S2OH sites represent aluminol and organic functional groups such as phenolics whose pKa values are close to that of aluminol, as all the studied clays contained organic carbon. Copper(II) showed a higher adsorption capacity and higher binding constants, while lead(II), being a softer cation (in respect to HSAB theory) preferred the softer basic sites with aluminol-phenol functional groups. Heavy metal cations are assumed to bind to the clay surface as the sole (unhydrolyzed) M(II) ion and form monodentate surface complexes. Cu(II) and Pb(II) adsorption in the presence of humic acid was modeled using a double-site binding model by the aid of FITEQL3.2, and then the whole system including binary surface-metal and surface-ligand and ternary surface-metal-ligand complexes was resolved with respect to species distributions and relevant stability constants. Electrostatic effects were accounted for using a diffuse layer model (DLM) requiring minimum number of adjustable parameters. Metal adsorption onto clay at low pH increased in the presence of humic acid, and the metal adsorption vs pH curves of metal-kaolinite-humic acid suspensions were much steeper (and distinctly S shaped) compared to the wider pH-gradient curves observed in binary clay-metal systems. The clay mineral in the presence of humic acid probably behaved more like a chelating ion-exchanger sorbent for heavy metals rather than being a simple inorganic ion exchanger.  相似文献   

12.
13.
Salih B  Denizli A  Kavaklı C  Say R  Pişkin E 《Talanta》1998,46(5):1205-1213
The dithizone-anchored poly (EGDMA-HEMA) microbeads were prepared for the removal of heavy metal ions (i.e. cadmium, mercury, chromium and lead) from aqueous media containing different amounts of these ions (25-500 ppm) and at different pH values (2.0-8.0). The maximum adsorptions of heavy metal ions onto the dithizone-anchored microbeads from their solutions was 18.3, Cd(II); 43.1, Hg(II); 62.2, Cr(III) and 155.2 mg g(-1) for Pb(II). Competition between heavy metal ions (in the case of adsorption from mixture) yielded adsorption capacities of 9.7, Cd(II); 28.7, Hg(II); 17.6, Cr(III) and 38.3 mg g(-1) for Pb(II). The same affinity order was observed under non-competitive and competitive adsorption, i.e. Cr(III)>Pb(II)>Hg(II)>Cd(II). The adsorption of heavy metal ions increased with increasing pH and reached a plateaue value at around pH 5.0. Heavy metal ion adsorption from artificial wastewater was also studied. The adsorption capacities are 4.3, Cd(II); 13.2, Hg(II); 7.2, Cr(III) and 16.4 mg g(-1) for Pb(II). Desorption of heavy metal ions was achieved using 0.1 M HNO(3). The dithizone-anchored microbeads are suitable for repeated use (for more than five cycles) without noticeable loss of capacity.  相似文献   

14.
The adsorption of lead (II) ions on three Algerian montmorillonites (sodium, non-sodium, and acidic-activated) was studied. Transmission electron microscopy coupled with energy dispersive X-ray analysis, X-ray fluorescence and physical adsorption of gases were used to characterize the clays. This characterization has shown than the activation with acid increases the surface area as a consequence of the rupture of the laminar structure. The effect of the pH in the lead adsorption capacity was analyzed. The results show that adsorption is strongly depended on the pH. At low pH values, the mechanism that governs the adsorption behavior of clays is the competition of the metal ions with protons. Between pH 2 and 6, the main mechanism is an ion exchange process. The kinetics of the adsorption is tested with respect to pseudo-first-order and second-order models. The adsorption process, gives a better fit with the Langmuir isotherm, being the monolayer capacity ranging between 18.2 and 24.4?mg?g?1. The adsorption of lead decreased in the order Acidic-M2?>?M2?>?M1. Thermodynamic parameters such as ??H, ??S, and ??G were calculated. The adsorption process was found to be endothermic and spontaneous. The enthalpy change for Pb(II) by M1 adsorption has been estimated as 60?kJ?mol?1, indicating that the adsorption of Pb(II) by all montmorillonites used corresponds to a physical reaction. The adsorption capacity of washed Acidic-M2 was very high compared to M2 and M1.  相似文献   

15.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

16.
A series of granular pH-sensitive semi-interpenetrating polymer network (semi-IPN) hydrogels based on chitosan (CTS), acrylic acid (AA) and gelatine (GE) were utilized for the adsorption and recycle of Pb(II) from aqueous solutions. The composite hydrogels have been characterized by FT-IR and TGA. The effects of contact time, pH value and initial Pb(II) concentration on the adsorption were investigated. Results indicated that the adsorption capacity of the hydrogel increased with increasing pH value and initial Pb(II) concentration, and a pH-sensitive adsorption characteristic was presented. The adsorption rate of the semi-IPN hydrogels on Pb(II) is fast with an adsorption rate constant of 14.9790 mg/(g·s), and adsorption equilibrium could be reached within 10 min. The adsorption isotherms of the hydrogels for Pb(II) could be described well by the Langmuir equation, rather than the Freundlich equation. The as-prepared hydrogels showed good reusability with 0.05 mol/l HNO3 solutions as the desorbing agent and 0.1 mol/l NaOH solutions as the regeneration agent, respectively. After five consecutive adsorption-desorption processes, the semi-IPN hydrogel with 20 wt% GE may reach 85.26% of its initial adsorption capacity. In addition, the adsorbed Pb(II) can be quantitatively recovered by simply eluting the hydrogel with dilute HNO3 solution, and a recovery ratio of 89.27% was reached for the semi-IPN hydrogel. The satisfactory adsorption amount is mainly derived from the chelating of functional groups (i.e. –COO? and –NH2) with Pb(II) ions. The hydrogel adsorbents exhibited excellent affinity for Pb(II), and can be applied to treat wastewater containing heavy metal ion and simultaneously recover the valuable metal sources.  相似文献   

17.
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)Cu(Ⅱ)Zn(Ⅱ)Cd(Ⅱ)Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.  相似文献   

18.
A method is reported for surface grafting of polymer containing a functional monomer for metal chelating, poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] (poly(AGE/IDA-co-DMAA) onto silica modified by silylation with 3-mercaptopropyltrimethoxysilane. Monomer 1-(N,N-bis-carboxymethyl)amino-3-allylglycerol (AGE/IDA) was synthesized by reaction of allyl glycidyl ether with iminodiacetic acid. The resulting sorbent has been characterized using FT-IR, elemental analysis, thermogravimetric analysis (TGA), FT-Raman and scanning electron microscopy (SEM) and evaluated for the preconcentration and determination of trace Pb(II) in human biological fluid and environmental water samples. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of functionalized resin was 15.06 mg g−1. The chelating sorbent can be reused for 15 cycles of sorption–desorption without any significant change in sorption capacity. A recovery of 96.2% was obtained for the metal ion with 0.5 M nitric acid as eluting agent. The profile of lead uptake by the sorbent reflects good accessibility of the chelating sites in the poly(AGE/IDA-co-DMAA)-grafted silica gel. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich–Peterson models. On the basis of equilibrium adsorption data the Langmuir, Freundlich and Temkin constants were determined as 0.70, 1.35 and 2.7, respectively at pH 5.5 and 20 °C. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption.  相似文献   

19.
Isotherms of adsorption of Cu(II) and Ni(II) onto solid Azraq humic acid (AZHA) were studied at different pH (2.0-3.7) values and 0.1 M NaClO4 ionic strength. The Langmuir monolayer adsorption capacity was found to range from 0.1 to 1.0 mmol metal ion/g AZHA, where Cu(II) has higher adsorptivity than Ni(II). The previously reported NICA-Donnan parameters for sorption of Cu(II) on HA fit the amount of Cu(bound) determined in the present study at pH 3.7 but underestimates those at pH values of 3.0, 2.4, and 2.0. The contribution of low affinity sites to binding of metal ions increases with decreasing pH and increasing metal ion loading. The aggregation of HA, which is facilitated by decreasing pH and increasing metal loading, may increase the ability of low-affinity sites to encapsulate metal ions. The binding of Ni(II) to HA exhibits less heterogeneity and less multidentism than that of Cu(II). AZHA loaded with Cu(II) and Ni(II) was found to be insoluble in water with no measurable amount of desorbed metal ions.  相似文献   

20.
This study introduces a sensitive and simple method for selective adsorption of hexavalent chromium, Cr(VI), from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The method utilized activated carbon modified with tris(hydroxymethyl)aminomethane (AC-TRIS) as an adsorbent. Surface properties of the new chemically modified AC-TRIS phase were confirmed by Fourier transform infrared (FTIR) spectroscopy. Seven metal ions, including Co(II), Cu(II), Ni(II), Pb(II), Cr(III), Cr(VI), and Fe(III) were evaluated and determined at different pH values (1.0–8.0), except for Fe(III) at pH values (1.0–4.0). Based on the results of the effect of pH on adsorption of these metal ions on AC-TRIS, Cr(VI) was selected for the study of other parameters controlling its maximum uptake on AC-TRIS under batch conditions and at the optimum pH value 1.0. The maximum static adsorption capacity of Cr(VI) onto the AC-TRIS was found to be 43.30 mg g?1 at this pH and after 1 hour contact time. The adsorption data of Cr(VI) were modeled using both Langmuir and Freundlich classical adsorption isotherms. Results demonstrated that the adsorption of Cr(VI) onto AC-TRIS followed a pseudo second-order kinetic model. In addition, the efficiency of this methodology was confirmed by applying it to real environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号