首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Nickel(II) and copper(II) complexes of two unsymmetrical tetradentate Schiff base ligands [Ni(Me-salabza)] (1), [Cu(Me-salabza)] (2) and [Ni(salabza)] (3), {H2salabza = N,N′-bis[(salicylidene)-2-aminobenzylamine] and H2Me-salabza = N,N′-bis[(methylsalicylidene)-2-aminobenzylamine]}, have been synthesized and characterized by elemental analysis and spectroscopic methods. The crystal structures of 2 and 3 complexes have been determined by single crystal X-ray diffraction. Both copper(II) and nickel(II) ions adopt a distorted square planar geometry in [Cu(Me-salabza)] and [Ni(salabza)] complexes. The cyclic voltammetric studies of these complexes in dichloromethane indicate the electronic effects of the methyl groups on redox potential.  相似文献   

2.
Two coordination polymers, [Co(L1)(IPA] n (1) and {[Ag(L2)(HMIPA)]·H2O} n (2) (H2IPA = isophthalic acid, L1 = 1,2-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H2MIPA = 5-methylisophthalic acid, L2 = 1,6-bis(5,6-dimethylbenzimidazol-1-yl)hexane, have been synthesized and characterized by physicochemical and spectroscopic methods, as well as single-crystal X-ray diffraction. In 1, six-coordinated cobalt centers are bridged by L1 and IPA2? ligands to generate a (4,4) two-dimensional layer. However, complex 2 features a 1D chain structure, which is further extended by O–H···O hydrogen bonding interactions into a 2D supramolecular layer with (63) topology. The fluorescence and thermal gravimetric analysis of both complexes were also explored. Furthermore, the complexes 1 and 2 exhibit remarkable catalytic properties for the degradation of methyl orange dyes in a Fenton-like process.  相似文献   

3.
The complexes trans-bis[2-(aminomethyl)-1H-benzimidazole-κ 2 N,N″]diaquazinc(II) dichloride dihydrate 1 and trans-bis[2-(aminomethyl)-1H-benzimidazole-κ 2 N,N″]aquazinc(II) dichloride dihydrate 2 were synthesized selectively by the promotion of O–H···Cl hydrogen bond interactions. The hexacoordinated complex 1 was synthesized at pH 4.5. The dilution of 1 in deionized water produced the pentacoordinated complex 2. NMR and vibrational spectroscopies corroborated the presence of these compounds. Moreover, mass spectrometry and thermogravimetric (TGA) studies demonstrated that chloride ions and crystallization water molecules are essential for the stabilization of 1 but not for complex 2. X-ray diffraction crystallography studies indicated that the presence of two water molecules bonded to the Zn atom elongated all of the coordination bonds. The incidence of a network of hydrogen bond interactions compensates for the unstable hexacoordination. Natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) studies of the crystal structures of 1 and 2 were used to explain the nature of the coordination bonds and the complexes’ stability .  相似文献   

4.
The first MnIII complexes with Schiff bases and tricyanomethanide-anion were synthesized: [Mn(salen)C(CN)3(H2O)] (1), [Mn(5-Brsalen)C(CN)3(H2O)] (2), [Mn(salpn)C(CN)3(H2O)] (3), [Mn(3-MeOsalen)C(CN)3(H2O)] (4), [Mn(5-Brsalen)(MeOH)(H2O)][C(CN)3] (5), and [Mn(3-MeOsalpn)(H2O)2][C(CN)3] (6), where SalenH2 is N,N′-bis(salicylidene)ethylenediamine, 5-BrsalenH2 is N,N′-bis(5-bromosalicylidene)ethylenediamine, SalpnH2 is N,N′-bis-(salicylidene)-1,3-diaminopropane, 3-MeOsalenH2 is N,N′-bis(3-methoxysalicylidene)-ethylenediamine, 3-MeOsalpnH2N,N′-bis(3-methoxysalicylidene)-1,3-diaminopropane. The tricyanomethanide anion in complexes 14 acts as a the terminal ligand, whereas in complexes 5 and 6 tricyanomethanide is not coordinated by MnIII and acts as an out-of-sphere counterion. The structures of complexes 14 are characterized by the formation of dimers due to hydrogen bonds between the water molecules and oxygen atoms of the Schiff bases. The Mn...Mn distances inside the dimers are 4.69–5.41 Å. Complex 6 has a zigzag chain structure consisting of the [Mn(3-MeOsalpn)(H2O)2]+ cations bound by double bridging aqua ligands. The study of the magnetic properties of complexes 1, 3, 4, and 6 showed the existence of antiferromagnetic interactions between the MnIII ions through the system of hydrogen bonds.  相似文献   

5.
Two new dinuclear copper(II) complexes, Cu2(L1)4(mal)2(H2O)2 (1) (L1 = 5,6-dimethylbenzimidazole, mal = malonate), Cu2(L2)2(pydca)2·4H2O (2) (L2 = 1,5-bis(5,6-dimethylbenzimidazole)pentane, pydca = pyridine-2,6-dicarboxylate) have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The Cu(II) atoms in 1 and 2 both have square pyramidal coordination geometry. In 1, the two similar mononuclear structures are linked by π–π stacking as well as multiple hydrogen bonding interactions to generate a 2D supramolecular layer, while complex 2 is connected with two different patterns of π–π stacking and hydrogen bonding interactions into a 3D supramolecular network. The catalytic activities of 1 and 2 for the degradation of Congo red have been investigated.  相似文献   

6.
Two new coordination polymers, formulated as [Co(L1)(btec)0.5] n (1) and {[Co(L2)(bdc)]·H2O} n (2) (L1 = 1,3-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2bdc = 1,3-benzenedicarboxylic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid, L2 = 1,3-bis(benzimidazol-1-ylmethyl)benzene), have been hydrothermally synthesized and characterized by physicochemical and spectroscopic methods as well as single-crystal X-ray diffraction. The cobalt atoms present different environments, with a trigonal pyramidal geometry in 1 and a distorted octahedral configuration in 2. Complex 1 shows a 2D (4,4) network linked by L1 and btec4? anions, giving an uninodal 4-connected sql topology with a point symbol of {42·62}, while complex 2 displays a 1D ladder-like chain structure, which is further assembled into a 3D supramolecular architecture via C–H···π hydrogen bonding interactions. The fluorescence properties of both complexes have been investigated in the solid state.  相似文献   

7.
Two new bis(5,6-dimethybenzimidazole)-based CoII complexes, Co(pydca)(L)2·2H2O (1) and [Co(bdc)(L)] n (2) (L = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, H2pydca = pyridine-2,6-dicarboxylic acid, H2bdc = 1,4-benzenedicarboxylic acid) were synthesized and characterized by physicochemical, spectroscopic methods and single-crystal diffraction. The cobalt(II) centers display different environments with distorted square-pyramidal geometry in 1 and a perfect tetrahedral geometry in 2. Complex 1 is a mononuclear structure, which is further assembled into a 3D supramolecular network via strong hydrogen bonding as well as ππ interactions; while complex 2 possesses a 2D corrugated (4,4) network that is further formed into a (3,4,4)-connected network with (62.84)(63)2(64.82)2-3,4,4T25 topology due to classical hydrogen bonds. The fluorescence and catalytic performances of the two complexes for the degradation of methyl orange by sodium persulfate have been investigated.  相似文献   

8.
A pair of stereoisomers of nickel Schiff base complexes, namely [Ni(C17H15N4O2)2·2CH3OH]n (1) (C17H15N4O2 = 2-acetylpyrazine-l-tryptophan) and [Ni(C17H15N4O2)2·2CH3OH]n (2) (C17H15N4O2 = 2-acetylpyrazine-d-tryptophan), were synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray diffraction single-crystal analyses indicate that the structure of 2 is essentially 0D monomeric, while a 2D layer structure is formed through N–H…O intermolecular hydrogen bonds for 1. The interactions between complex 1 and calf thymus DNA were investigated by spectroscopic and viscometric methods. The results indicate that complex 1 interacts with DNA very strongly (K b = 1.01 × 107 mol?1 L and K sq = 1.11). The nature of the binding seems to be mainly an electrostatic interaction between DNA and the complex. However, other binding modes, such as hydrogen bonding, may also be present in this system.  相似文献   

9.
A new Schiff base complex [Ni(H2L1)(NO3)](NO3) (1) (H2L1 = 3-[N,N′-bis-2-(5-bromo-3-(morpholinomethyl) salicylideneamino) ethyl amine]) was synthesized from reaction of the ditopic ligand H2L1 with Ni(NO3)2 in anhydrous MeOH. Complex 1 is stable in the solid state, but prone to hydrolysis. Recrystallization of 1 from wet MeOH led to the isolation of a novel unsymmetrical complex [Ni(HL2)(NO3)](NO3) (2) (HL2 = 2-[(2-(2-aminoethylamino) ethylimino) ethyl)-5-bromo-3-(morpholino methyl) salicylidene amine]). X-ray single-crystal analysis of complex 2 showed that complex 1 had undergone partial decomposition of one imine bond. In contrast, the Schiff base complex [Ni(HL3)](NO3) (3) (H2L3 = N,N′-bis(5-methyl-salicylidene) diethylenetriamine) was stable in wet methanol, and the single-crystal structure of 3 showed that the Ni(II) center was coordinated in an unsymmetrical square planar geometry. Density functional theory calculations were performed in order to obtain a geometry-optimized model of complex 1, in which the Ni(II) center was coordinated in a similar manner as that in complex 3. The thermodynamic parameters were calculated, in order to rationalize the difference in hydrolytic reactivity between complexes 1 and 3.  相似文献   

10.
The catalytic reactivity of a group of diferric oxo-bridged complexes (13) of a tetradentate ligand (bpmen = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-diaminoethane) toward alkane hydroxylation has been evaluated. Among the three complexes, the µ-oxo diiron(III) complex [Fe(bpmen)(µ-O)FeCl3] (1) has been synthesized for the first time. The complex 1 has been characterized by spectroscopic analysis and X-ray crystallography. At room temperature, the µ-oxo diiron(III) complexes 13 have been found to be useful catalysts in hydroxylation of alkanes with m-chloroperbenzoic acid as oxidant. [Fe(bpmen)(µ-O)FeCl3] (1) has been found to be the most active catalyst. Moreover, the catalytic ability of the complexes in the oxidation of alcohols to ketones with hydrogen peroxide at room temperature has also been investigated.  相似文献   

11.
The preparation of tetradentate amine-bis(phenol) proligands with dichloro and difluoro substituted phenol groups and their reaction with FeX3 (X = Cl or Br) is described. The compounds, 2-pyridylamino-N,N-bis(2-methylene-4,6-dichlorophenol), H2[L1]; 2-pyridylamino-N,N-bis(2-methylene-4,6-difluorophenol), H2[L2]; dimethylaminoethylamino-N,N-bis(2-methylene-4,6-dichlorophenol), H2[L3]; 2-tetrahydrofurfuryl-N,N-bis(2-methylene-4,6-dichlorophenol), H2[L4]; and methoxyethylamino-N,N-bis(2-methylene-4,6-dichlorophenol), H2[L5] were prepared in aqueous medium and obtained as white powders in good to excellent yield. Ten new iron(III) halide complexes supported by these tetradentate ligands are reported. Representative single crystal X-ray diffraction structures were obtained for H2[L1] and a water adduct of the iron(III) complex, aquachloro{2-pyridylamino-N,N-bis(2-methylene-4,6-dichlorophenolato)}iron(III), 2·H2O. The structure of the proligand H2[L1] shows intramolecular hydrogen bonding. In the solid-state structure, the iron complex exhibits intermolecular hydrogen bonding between the water ligand and the phenolate oxygen of a neighbouring complex. The anhydrous complexes were studied for catalytic activity towards C-C cross-coupling of Grignard reagent nucleophiles with alkyl halide electrophiles.  相似文献   

12.
Three cobalt(II) coordination polymers {[Co(L1)(nda)(H2O)2]·2H2O} n (1), [Co(L2)(tbi)(H2O)] n (2) and [Co(L2)(bpdc)(H2O)] n (3) (L1 = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, L2 = 1,3-bis(benzimidazol-1-yl)-2-propanol, H2nda = 2,6-naphthalenedicarboxylic acid, H2tbi = 5-tert-butyl isophthalic acid and H2bpdc = 4,4′-biphenyldicarboxylic acid) were synthesized and characterized by physicochemical and spectroscopic methods. Complex 1 exhibits a 1D loop-like structure, which is further extended into a 3D 3,3,4T31 network through two O–H···O hydrogen bonding interactions. Complex 2 displays a 1D ladder-like chain, arranged into a 2D supramolecular network with 3,3,4L34 topology via classical O–H···O hydrogen bonding interactions, whereas complex 3 features a 2D 3,4L13 layer structure and further assembles into a 3D framework with a twofold interpenetrating sqc65 topology through O–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of these complexes for the degradation of Congo red in a Fenton-like process have been investigated.  相似文献   

13.
Two series of poly(imide-ester)s (PIEs) and poly(ether-imide-ester)s (PEIEs), having benzoxazole or benzothiazole pendent groups, were conveniently prepared by the diphenylchlorophosphate-activated direct polyesterification of two bis(imide-carboxylic acid)s (1), such as 2-[3,5-bis(N-trimellitimidoyl)phenyl]benzoxazole (1 O ) and 2-[3,5-bis(Ntrimellitimidoyl) phenyl]benzothiazole (1 S ) and two bis(imide-ether-carboxylic acid)s (2), such as 2-[3,5-bis(4-trimellitimidophenoxy)-phenyl]benzoxazole (2 O ), and 2-[3,5-bis(4-trimellitimidophenoxy)-phenyl]benzothiazole (2 S ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. The structures, solubilities and thermal properties of obtained polymers were investigated in detail. All of the resulting polymers were characterized by FTIR and 1H-NMR spectroscopy and elemental analysis. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, tetrahydrofuran and m-cresol, as well as in polar organic solvents, such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide and dimethyl sulfoxide. The modified polymers were obtained in quantitative yields with inherent viscosities between 0.47 and 0.67 dl·g?1. Experimental results indicated that all the polymers had glass transition temperature between 198 °C and 262 °C, the decomposition temperature at 10% weight loss between 398 °C and 531 °C under nitrogen.  相似文献   

14.
A silica gel composite (denoted as 1–SG) doped with a proton-conductive metal–Schiff-base–POM-MOF, {[Cu3(L)2(H2O)4][Cu(DMF)4(SiW12O40)]·9H2O} n (1) (where L is N, N′-bis[1-(2-methoxyphenol-6-yl)-methylidene] hydrazine hydrate, DMF is dimethyl formamide, POM-MOF is polyoxometalates-based metal–organic framework), was prepared by sol–gel method. The structure of as-synthesized 1–SG was confirmed by infrared spectrometry and X-ray powder diffraction, and its proton conductivity was calculated based on electrochemical impedance spectroscopic measurement. It was found that the structural characteristics of complex 1 are retained successfully in the silica gel skeleton of as-prepared 1–SG. Besides, though 1–SG contains just 6.25 wt% complex 1, it exhibits good proton conductivities of as much as 1.51 × 10?3–1.26 × 10?2 S cm?1 in the temperature range of 25–100 °C under a relative humidity of 98 %; and in particular, it shows better proton conductivity than both complex 1 and silica gel at the same conditions, due to the presence of a large number of micropores and mesopores filled with “liquid”.  相似文献   

15.
Two new metal–organic coordination polymers {[Co(L1)(nip)]·H2O} n (1) and [Co(L2)(ip)] n (2) (H2ip = isophthalic acid, L1 = 1,3-bis(benzimidazol-1-ylmethyl)benzene, L2 = 1,4-bis(5-methylbenzimidazol-1-ylmethyl)benzene, H2nip = 5-nitroisophthalic acid) have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as single-crystal X-ray diffraction analysis. The analysis reveals that complex 1 has a 1D double chain structure connected by L1 and nip2? ligands, which is further assembled into a 3D bbf (moganite network) supermolecular framework via two types of C–H···O hydrogen bond interactions. Complex 2 possesses a 3D MOF with a four-connected cds (CdSO4 network) topology. The fluorescence and catalytic properties of the complexes for the degradation of Congo red have been investigated.  相似文献   

16.
A series of chromium(III)-, cobalt(III)-, and iron(III)-based complexes of the general formula [(NO)2MCl] (1–7) (NO: N-salicylidene(R)amine, R = 1-naphthyl or cyclohexyl) have been applied as catalysts for the coupling reaction of carbon dioxide and epoxystyrene (styrene oxide) in the presence of tetrabutylammonium bromide (Bu4NBr) as a cocatalyst. The reactions were carried out under relatively low pressure and solvent-free conditions. In addition, iron complexes (810) containing the ligands, N′-(thiophene-2-methylene)benzene-1,2-diamine, (8), N′-(quinoline-2-methylene)benzene-1,2-diamine (9), and sodium N-(4-sulfonato-salicylidene)-1,2-phenylenediamine (10) were also utilized for the catalytic reaction. The influence of metal center, ligand, temperature, and reaction time on the coupling reaction was investigated. The catalyst systems proved to be selective in the coupling reaction of CO2 and styrene oxide, resulting in cyclic styrene carbonate. In general, the iron(III)- and cobalt(III)-based catalysts bearing the aromatic 1-naphthyl terminal groups showed the highest catalytic activity under similar reaction conditions.  相似文献   

17.
The aim of this study was to explore the influence of the position and angles of carboxyl groups of polycarboxylates on constructing coordination polymers. Three Co(II) metal–organic coordination polymers based on a tri-pyridyl-bis-amide ligand, namely [Co(L)(1,2-BDC)(H2O)2]·2H2O (1), [Co(L)(1,4-BDC)(H2O)2]·2H2O (2) and [Co(L)2(BTEC)0.5]·H2O (3) (L = N,N′-bis(pyridine-3-yl)pyridine-2,6-dicarboxamide, 1,2-H2BDC = 1,2-benzenedicarboxylic acid, 1,4-H2BDC = 1,4-benzenedicarboxylic acid, H4BTEC = 1,2,4,5-benzenetetracarboxylic acid), have been obtained by tuning the auxiliary polycarboxylate ligands. Structural analyses reveal that complexes 13 display diverse structures. Complex 1 displays a meso-helical chain linked by L ligands, which is further extended into a three-dimensional supramolecular framework through hydrogen-bonding interactions. The 1,2-BDC with a chelating coordination mode only acts as the hydrogen bond acceptor. In complex 2, the 1,4-BDC anions connect adjacent Co(II) atoms to form a linear chain, which is connected by hydrogen-bonding interactions to construct a 3D supramolecular network. Complex 3 exhibits a chain, which is composed of left-/right-handed Co-L helical chains and Co-BTEC linear chain. The 1D chains are ultimately extended into a two-dimensional supramolecular network by hydrogen-bonding interactions. Moreover, the thermal stability and the fluorescent properties of the title complexes and the electrochemical behaviors of a bulk-modified carbon paste electrode with complex 2 have been investigated at room temperature.  相似文献   

18.
Four new mononuclear triazido-cobalt(III) complexes [Co(L 1/2/4 )(N3)3] and [Co(L 3 )(N3)3]·CH3CN where L 1  = [(2-pyridyl)-2-ethyl]-(2-pyridylmethyl)-N-methylamine, L 2  = [(2-pyridyl)-2-ethyl]-[6-methyl-(2-pyridylmethyl)]-N-methylamine, L 3  = [(2-pyridyl)-2-ethyl]-[3,5-dimethyl-4-methoxy-(2-pyridylmethyl)]-N-methylamine, and L 4  = [(2-pyridyl)-2-ethyl]-[3,4-dimethoxy-(2-pyridylmethyl)]-N-methylamine, respectively, were synthesized and structurally characterized. The four complexes were characterized by elemental microanalyses, IR and UV–VIS spectroscopy and X-ray single crystal crystallography. The complexes display two strong IR bands over the frequency region 2,020–2,050 cm?1 assigned for the asymmetric stretching frequency, νa(N3) of the coordinated azides indicating facial geometry. The molecular structure determinations of the complexes were in complete agreement with fac-[Co(L)(N3)3] conformation in distorted octahedral Co(III) environment.  相似文献   

19.
The interaction of the enantiopure (R)- and (S)-1-phenyl-N,N-bis(pyridine-3- ylmethyl)ethanamine ligands, R-L 1 and S-L 1 , with copper(II) chloride followed by addition of hexafluorophosphate resulted in the isolation of the corresponding enantiomeric complexes [Cu(R-L 1 )Cl](PF6) (1), [Cu(S-L 1 )Cl](PF6) (2) and [Cu(S-L 1 )Cl](PF6)??0.5Et2O (3), in which dimerization occurs through two long Cu??????Cl interactions, the ??-chloro bridges being thus strongly asymmetric. The organic ligand is bound to the metal centre via its N3-donor dipyridylmethylamine fragment in a planar fashion, such that each copper centre is in a square planar environment (or distorted square pyramidal with a long axial bond length if the additional interaction is considered). When R,S-L 1 was employed in a parallel synthesis, the similar racemic complex [Cu(R,S-L 1 )Cl](PF6)??0.5MeOH (4) was obtained, in which the L 1 ligands in each dimeric unit have opposite hands. In contrast to the complexes of L 1 , the reaction of Cu(II) chloride with the related ligand, (R)-1-cyclohexyl-N,N-bis(pyridine-3-ylmethyl)ethanamine (R-L 2 ), yielded the mononuclear complex [Cu(R,S-L 2 )Cl2] (5), displaying a distorted square pyramidal coordination geometry. The structure of this product along with its corresponding circular dichroism spectrum revealed that racemisation of the starting R-L 2 ligand has occurred under the relatively mild (basic) conditions employed for the synthesis. A temperature-dependent magnetic studies of the complexes 1, 2 and 5 indicate that a week ferromagnetic interaction is operative in each dicopper core in 1 and 2 with 2J?=?1.2?cm?1. On the other hand, a week antiferromagnetic intermolecular interaction is operative for 5.  相似文献   

20.
Novel adamantane-oxalamide derivatives, N,N′-bis(1-adamantylglycine methyl ester)oxalamide (meso-1 and rac-1), N,N′-bis(3-aminoadamantane-1-carboxylic acid methyl ester)oxalamide (2) and N,N′-bis(3-aminoadamantane-1-carboxylic acid)oxalamide (3) were prepared and structurally characterized by spectroscopic methods and X-ray analysis. Crystal packing of the structures meso-1 and rac-1 is defined by one-dimensional α-networks of hydrogen-bonded chains. The crystal structures of 2 and 3 are characterized by two-dimensional β-networks of hydrogen bonds. The oxalamide 3 crystallizes as the solvates only. In the crystal structure of 3 the protic solvent participates in hydrogen bonding with the oxalamide moieties. However, in non-protic solvents 3 crystallizes as a solvate but the solvent does not participate in hydrogen bonding. The two-dimensional network of hydrogen bonds connecting molecules of 3 generates channels, which are filled by discrete solvent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号