首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

2.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

3.
《Analytical letters》2012,45(1):22-33
A three-dimensional L-cysteine (L-cys) monolayer assembled on gold nanoparticles (GNP) providing simultaneous detection of uric acid (UA) and ascorbic acid (AA) was studied in this work. The cyclic voltammetry demonstrated that, at a bare glassy carbon electrode (GCE) or planar gold electrode, the mixture of UA and AA showed one overlapped oxidation peak; whereas when the electrode was modified with GNP, the oxidation peaks for UA and AA were separated. While a GNP modified electrode was further modified with L-cys monolayer (L-cys/GNP/GCE), namely, three-dimensional L-cys monolayer, a better separation for UA and AA response was obtained. Interestingly, the L-cys monolayer-modified planar gold electrode presented a block effect on the oxidation of AA, which was facilitated by the three-dimensional L-cys monolayer attributed to its distinct structure. The pH of solution presented a noticeable effect on the separation of UA and AA at GNP modified electrodes with or without L-cys monolayer. Wide concentration ranges from 2 × 10?6?1 × 10?3 M to UA and 2 × 10?6?8 × 10?4 M to AA could be obtained at L-cys/GNP/GCE.  相似文献   

4.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

5.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

6.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

7.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

8.
《Analytical letters》2012,45(16):2618-2630
A carbon paste electrode (CPE), modified with novel hydroquinone/TiO2 nanoparticles, was designed and used for simultaneous determination of ascorbic acid (AA), uric acid (UA) and folic acid (FA). The magnitude of the peak current for modified TiO2-nanoparticle CPE (MTNCPE) increased sharply in the presence of ascorbic acid and was proportional to its concentration. A dynamic range of 1.0–1400.0 μM, with the detection limit of 6.4 × 10?7 M for AA, was obtained using the DPV technique (pH = 7.0). The prepared electrode was successfully applied for the determination of AA, UA, and FA in real samples.  相似文献   

9.
《Electroanalysis》2006,18(5):440-448
We report the combination of the charge repelling property of tetraphenyl‐borate (TPB) anion and the electrooxidation catalytic effect of cobalt(II) tetrakisphenylporphyrin (CoTPP) embedded in a sol gel ceramic film to develop a modified glassy carbon electrode (CoTPP‐TPB‐SGGCE) for the simultaneous determination of dopamine (DA) and uric acid (UA). The optimized CoTPP‐TPB‐SGGCE shows excellent sensitivity and selectivity for the DA and UA analysis. As high as 2000 fold acceptable tolerance of ascorbic acid (AA) for the determination of trace DA and UA is reached. In the presence of 0.10 mM AA, the linear concentration range for DA is from 6.0×10?8 to 2.5×10?5 M, and the detection limit is 2.0×10?8 M. For UA, the linear concentration range is from 1.0×10?7 to 3.5×10?5 M, and the detection limit is 7.0×10?8 M. Our study has also demonstrated that the novel CoTPP‐TPB‐SGGCE shows high stability and reliability. For 6.00 μM DA and UA, a total of 12 measurements were taken in one week, and the relative standard deviation is 2.05% and 2.68% respectively. No obvious shift of peak current and peak potential is observed over a three‐month lifetime test. The response of the sensor is very quick and response time is approximately 1 s. Satisfactory results are also achieved when the CoTPP‐TPB‐SGGCEs being used to detect the DA and UA in human urine samples.  相似文献   

10.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

11.
A PVC/TTF‐TCNQ composite electrode has been employed as detector in a flow injection system. The proposed method allows the simultaneous detection of ascorbic acid (AA) and uric acid (UA) in mixtures by using a FIA system in a simple manner, without pre‐treatment or modified electrode. This method is based on the amperometric determination of (a) ascorbic acid at 0.15 V and (b) both analytes at 0.35 V, being the response linear in the range 1×10?2–4×10?4 M for both analytes with detection limits (S/N=3) of 1.2×10?4 M and 8.1×10?5 M for AA and UA, respectively.  相似文献   

12.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

13.
A simple and sensitive method for simultaneously measuring dopamine (DA), ascorbic acid (AA), and uric acid (UA) using a poly(1‐aminoanthracene) and carbon nanotubes nanocomposite electrode is presented. The experimental parameters for composite film synthesis as well as the variables related to simultaneous determination of DA, AA, and UA were optimized at the same time using fractional factorial and Doehlert designs. The use of carbon nanotubes and poly(1‐aminoanthracene) in association with a cathodic pretreatment led to three well‐defined oxidation peaks at potentials around ?0.039, 0.180 and 0.351 V (vs. Ag/AgCl) for AA, DA, and UA, respectively. Using differential pulse voltammetry, calibration curves for AA, DA, and UA were obtained over the range of 0.16–3.12×10?3 mol L?1, 3.54–136×10?6 mol L?1, and 0.76–2.92×10?3 mol L?1, with detection limits of 3.95×10?5 mol L?1, 2.90×10?7 mol L?1, and 4.22×10?5 mol L?1, respectively. The proposed method was successfully applied to determine DA, AA, and UA in biological samples with good results.  相似文献   

14.
朱小红  林祥钦 《中国化学》2009,27(6):1103-1109
用循环伏安法(CV)选择不同电位区间来电聚合烟酰胺(NA)得到了两种聚合物膜修饰电极:poly-niacinamide/GCE (poly-NA/GCE)和poly- nicotinic acid /GCE (poly-NC/GCE)。这两电极都具有显著电化学催化作用,能明显地降低多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的氧化过电位,并在混合溶液中使这些物质的氧化峰电位距离足够大,可进行三物质的同时测定。poly-NC/GCE的电催化性能更好一些,用差分脉冲伏安法(DPV)测定抗坏血酸,线性范围为75–3000 µmol L-1,电流灵敏度为5.6 mA•L•mol-1;测定多巴胺,线性范围为0.37 – 16 µmol L-1,电流灵敏度为1140 mA•L•mol-1; 测定尿酸,线性范围为0.74 – 230 µmol L-1,电流灵敏度为102 mA•L•mol-1。该电极具有很高的灵敏度、选择性和抗污染能力。  相似文献   

15.
A convenient, low cost, and sensitive electrochemical method, based on a disposable graphene nanosheets (GR) and NiO nanoparticles modified carbon screen printed electrode (NiO/GR/SPE), is described for the simultaneous determination of dopamine (DA) and uric acid (UA). The modified electrode exhibited good electrocatalytic properties toward the oxidation of DA and UA. A peak potential difference of 150 mV between DA and UA was large enough to determine DA and UA individually and simultaneously. The anodic peak currents of DA were found to be linear in the concentration range of 1.0–500.0 μM with the detection limit of 3.14×10?7 M.  相似文献   

16.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

17.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

18.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a 4‐(2‐Pyridylazo)‐Resorcinol (PAR) polymer film modified glassy carbon electrode (GCE). The PAR polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of DA in a phosphate buffer solution (PBS) (pH 4.0). The linear range of 5.0×10?6–3.0×10?5 M and detection limit of 2.0×10?7 M were observed. Simultaneous detection of AA, DA and UA has also been demonstrated on the modified electrode. This work provides a simple and easy approach to selective detection of DA in the presence of AA and UA.  相似文献   

19.
The voltammetric behavior of dopamine (DA) and uric acid (UA) on a gold electrode modified with self‐assembled monolayer (SAM) of cysteamine (CA) conjugated with functionalized multiwalled carbon nanotubes (MWCNTs) was investigated. The film modifier of functionalized SAM was characterized by means of scanning electron microscopy (SEM) and also, electrochemical impedance spectroscopy (EIS) using para‐hydroquinone (PHQ) as a redox probe. For the binary mixture of DA and UA, the voltammetric signals of these two compounds can be well separated from each other, allowing simultaneous determination of DA and UA. The effect of various experimental parameters on the voltammetric responses of DA and UA was investigated. The detection limit in differential pulse voltammetric determinations was obtained as 0.02 µM and 0.1 µM for DA and UA, respectively. The prepared modified electrode indicated a stable behavior and the presence of surface COOH groups of the functionalized MWCNT avoided the passivation of the electrode surface during the electrode processes. The proposed method was successfully applied for the determination of DA and UA in urine samples with satisfactory results. The response of the gold electrode modified with MWCNT‐functionalized SAM method toward DA, UA, and ascorbic acid (AA) oxidation was compared with the response of the modified electrode prepared by the direct casting of MWCNT.  相似文献   

20.
《Analytical letters》2012,45(15):2633-2643
Abstract

A new polymer (polyhistidine) modified electrode has been fabricated and was applied to the catalytic oxidation of ascorbic acid (AA), reducing the overpotential by 400 mV. The catalytic rate constant of the modified electrode for the oxidation of AA was determined using a rotating electrode. The catalytic current was linearly dependent on the ascorbic acid concentration between 5×10?5 and 2×10?3 M. The catalytic effect on the AA resulted in the separation of the overlapping voltammograms of AA and dopamine (DA) in a mixture. This allowed the determination of AA in the presence of DA. The electrode was rather stable even after several months; a reproducible response of AA was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号