首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

2.
A series of monochalcogenide derivatives of the seco‐cubane [Sn3(μ2‐NHtBu)2(μ2‐NtBu)(μ3‐NtBu)] has been prepared and characterized by NMR and X‐ray crystallographic studies. These complexes exhibit different tin‐chalcogen bonding modes. In the case of the monotelluride, a terminal Sn=Te bond was observed in solution and in the solid state, whereas for the monosulfide, a μ2 bridging mode was adopted by the sulfur atoms. The monoselenide was found to employ both bonding modes in solution, although only the terminal Sn=Se bonding mode was structurally characterized. The complexes undergo chalcogen exchange between tin atoms in solution, and this process was studied by variable temperature NMR.  相似文献   

3.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

4.
The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight‐coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3‐OH groups and carboxylate groups of isonicotinate and benzene‐1,2‐dicarboxylate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–π interactions into a three‐dimensional supramolecular framework.  相似文献   

5.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

6.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)4(μ‐PCy2)2(μ‐Ph2PCH2PPh2)(μ3‐S){μ3‐η2‐CSC(S)S}] [Ru3(CO)4(μ‐H)3(μ‐PCy2)3(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2) reacts with CS2 at room temperature and yields the open 50 valence electron cluster [Ru3(CO)4(μ‐PCy2)2(μ‐dppm)(μ3‐S){μ3‐η2‐CSC(S)S}] ( 3 ) containing the unusual μ3‐η2‐C2S3 mercaptocarbyne ligand. Compound 3 was characterized by single crystal X‐ray structure analysis.  相似文献   

7.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

8.
The zinc alkoxide molecules in di‐μ3‐ethanolato‐diethyltetrakis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)tetrazinc(II), [Zn4(C2H5)2(C2H5O)2(C6H5O3)4], (I), and bis(μ3‐2‐ethoxyphenolato‐κ4O1,O2:O1:O1)bis(μ2‐2‐ethoxyphenolato‐κ3O1,O2:O1)bis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)bis(2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ2O3,O4)tetrazinc(II) toluene disolvate, [Zn4(C6H5O3)4(C8H9O2)4]·2C7H8, (II), lie on crystallographic centres of inversion. The asymmetric units of (I) and (II) contain half of the tetrameric unit and additionally one molecule of toluene for (II). The ZnII atoms are four‐ and six‐coordinated in distorted tetrahedral and octahedral geometries for (I), and six‐coordinated in a distorted octahedral environment for (II). The ZnII atoms in both compounds are arranged in a defect dicubane Zn4O6 core structure composed of two EtZnO3 tetrahedra and ZnO6 octahedra for (I), and of four ZnO6 octahedra for (II), sharing common corners. The maltolate ligands exist mostly in a μ2‐bridging mode, while the guetholate ligands prefer a higher coordination mode and act as μ3‐ and μ2‐bridges.  相似文献   

9.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

10.
The reaction of Na2[Fe(CO)4] with Br2CF2 in n‐pentane generates a mixture of the compounds (CO)3Fe(μ‐CO)3–n(μ‐CF2)nFe(CO)3 ( 2 , n = 2; 3 , n = 1) in low yields with 3 as the main product. 3 is obtained free from 2 by reacting Br2CF2 with Na2[Fe2(CO)8]. The non‐isolable monomeric complex (CO)4Fe=CF2 ( 1 ) can probably considered as the precursor for 2 . 3 reacts with PPh3 with replacement of two CO ligands to form Fe2(CO)6(μ‐CF2)(PPh3)2 ( 4 ). The complexes 2 – 4 were characterized by single crystal X‐ray diffraction. While the structure of 2 is strictly similar to that of Fe2(CO)9, the structure of 3 can better be described as a resulting from superposition of the two enantiomers 3 a and 3 b with two semibridging CO groups. Quantum chemical DFT calculations for the series (CO)3Fe(μCO)3–n(μ‐CF2)nFe(CO)3 (n = 0, 1, 2, 3) as well as for the corresponding (μ‐CH2) derivatives indicate that the progressively larger σ donor and π acceptor properties for the bridging ligands, in the order CO < CF2 < CH2, favor a stronger Fe–Fe bond.  相似文献   

11.
The molecule of the title compound, [Mn4Al(CH3)2(C3H7O2)4I5(C4H8O)], contains one AlIII and four MnII ions. Two Mn atoms are five‐coordinate in the form of a trigonal bipyramid or a square pyramid. The two other Mn atoms are six‐coordinate with an octahedral geometry. The fourcoordinate Al atom is linked to the manganese core by μ‐Oalkoxo bridges, forming an almost planar five‐membered ring.  相似文献   

12.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   

13.
The molecule of the title compound, [Sn4(C4H9)8(C7H6NO2)4O2], lies about an inversion centre and is a tetranuclear bis(tetrabutyldicarboxylatodistannoxane) complex containing a planar Sn4O2 core in which two μ3‐oxide O atoms connect an Sn2O2 ring to two exocyclic Sn atoms. Each Sn atom has a highly distorted octahedral coordination. In the molecule, the carboxylate groups of two aminobenzoate ligands bridge the central and exocyclic Sn atoms, while two further aminobenzoate ligands have highly asymmetric bidentate chelation to the exocyclic Sn atoms plus long O...Sn interactions with the central Sn atoms. Each Sn atom is also coordinated by two pendant n‐butyl ligands, which extend roughly perpendicular to the plane of the Sn4O10 core. Only one of the four unique hydrogen‐bond donor sites is involved in a classic N—H...O hydrogen bond, and the resulting supramolecular hydrogen‐bonded structure is an extended two‐dimensional network which lies parallel to the (100) plane and consists of a checkerboard pattern of four‐connected molecular cores acting as nodes. The amine groups not involved in the hydrogen‐bonding interactions have significant N—H...π interactions with neighbouring aminobenzene rings.  相似文献   

14.
15.
A novel 3D polymeric heteropolynuclear sodium(I) lead(II) complex containing different ligands, [NaPb(ClO4)(en)(NO2)2] was synthesized and characterized by elemental analysis and IR, and 1H‐, 13C‐, and 207Pb‐NMR spectroscopy. The single‐crystal X‐ray data of [NaPb(ClO4)(en)(NO2)2]n established that the complex is a three‐dimensional polymer, [(en)Pb(μ3‐ONO)2Na(μ3‐ONO)2Na(μ‐O2ClO2)Na]n. The Pb and Na atoms have four‐ and eight‐coordinate geometry, respectively. The lone pair of electrons at the PbII atom is ‘stereochemically active’.  相似文献   

16.
The metal‐directed self‐assembly of biphenylantimony trichloride and homocarboxylic acids LH [L = 2‐CHO‐C6H4COO ( 1 ), 2, 3‐2F‐C6H4COO ( 2 ), 4‐CF3–C6H4COO ( 3 )] provided three novel tetranuclear organoantimony(V) complexes, which were characterized by elemental analysis, FT‐IR, 1H, and 13C NMR spectroscopy as well as melting point, and X‐ray single crystal analysis. In the molecular structure, four hexacoordinate antimony atoms are linked into a [Sb2(μ‐O)2]2(μ‐O)2 “cage” architecture by oxo‐bridges which are terminally bridged by two carboxyl groups.  相似文献   

17.
In the title complex, [Ag(NO3)(C6H7N3O)]n or [Ag(NO3)(pyaoxH2)] (pyaoxH2 is N‐hydroxypyridine‐2‐carboxamidine), the Ag+ ion is bridged by the pyaoxH2 ligands and nitrate anions, giving rise to a two‐dimensional molecular structure. Each pyaoxH2 ligand coordinates to two Ag+ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH2 groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag+ ions. The Ag...Ag separation via the pyaoxH2 bridge is 2.869 (1) Å, markedly shorter than that of 6.452 (1) Åvia the nitrate bridge. The two‐dimensional structure is fishscale‐like, and can be described as pyaoxH2‐bridged Ag2 nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three‐dimensional network.  相似文献   

18.
The title compound, [Pb(C8H4O4)(H2O)]n, forms as an insoluble product in the reaction of sodium terephthalate(2−) with Pb(NO3)2 in water. Analysis has shown that the crystal structure is centrosymmetric, with the asymmetric unit containing one formula unit. The lead geometry is hemidirected seven‐coordinate, with both monodentate and bidentate carboxyl­ate coordination modes present. The combination of hydrogen bonds and coordination bonds produces a three‐dimensional structure, including the first example, in a lead complex, of the common metal‐coordinated carboxyl­ate/water (6) graph‐set motif.  相似文献   

19.
20.
The title complex, [BaNi(C3H2O4)2(H2O)3]n, is polymeric, with two non‐equivalent malonate dianions bridging one Ni atom and five different Ba atoms. The Ni atoms have a distorted octahedral (NiO6) environment, and are coordinated by four malonate O atoms in a planar arrangement and two water molecules in axial positions. The Ba atom may be described as a BaO9 polyhedron in a monocapped square‐antiprismatic environment, which involves two water molecules and seven O atoms from different malonate ligands. The three‐dimensional structure is further maintained and stabilized by hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号