首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose oxidase showed direct electrochemical transfer at glassy carbon electrodes immobilized with carbon nanotube‐gold colloid (CNT‐Au) composites with poly(diallydimethylammonium chloride) (PDDA) coatings. The modified electrode (GC/CNT/Au/PDDA‐GOD) was employed for the amperometric determination of glucose. Under optimal conditions, the biosensor displayed linear response to glucose from 0.5 to 5 mM with a sensitivity of 2.50 mA M?1 at an applied potential of ?0.3 V (vs. Ag|AgCl reference).  相似文献   

2.
The electrocatalytic activity of Ni films electrodeposited on glassy carbon (Ni/GC), titanium (Ni/Ti), and gold (Ni/Au) electrodes toward salicylic acid (SA) oxidation are investigated. The cyclic voltammetry studies show that the nature of substrate strongly influences the apparent electrocatalytic activities of the nickel over layer in basic medium. It is observed that the Ni/GC electrode has higher activity for SA oxidation compared to other electrodes. Effects of various parameters such as concentration of Ni2+, deposition time for Ni film growth, and deposition potential on the electrooxidation of SA are investigated. It is demonstrated that the Ni(OH)2/NiOOH plays the key role in the electrooxidation of SA. The response to SA on the Ni/GC electrode is examined using chronoamperometry.  相似文献   

3.
Electrodeposition method, a simple, cheap, and flexible approach, to fabricate gold nanoparticle (Au NPs) films with an area larger than 1 cm2 on indium tin oxide (ITO) electrodes modified with (3‐mercaptopropyl) trimethoxysilane (MPTMS) was presented. Size‐controllable and high loading Au NPs were obtained, which were characterized by field‐emission scanning electron microscopic (FESEM) and UV‐vis spectroscopy. Our current method provides a versatile and facile pathway to fabricate large‐scale metal nanoparticles thin film, enhancing alternatives for academic investigation and industrial application.  相似文献   

4.
Using multiwalled carbon nanotubes (MWNTs) as templates, noble metal (Au, Ag, Pt or Pd) nanoparticles (NPs) were fabricated in situ by electrochemistry with a diameter of 40–60 nm. Further, catalytic behaviors of these composite materials were investigated. Experiments showed that such carbon nanotubes decorated with Pd NPs modified glassy carbon electrodes exhibited higher electrocatalytic ability to some molecules such as evolution of hydrogen, reduction of oxygen and oxidation of ascorbic acid. Atomic force microscopy, X‐ray photoelectron spectroscopy and cyclic voltammetry were used to characterize the film formation and their properties.  相似文献   

5.
Immobilization of Ag and Au nanoparticles (NPs) synthesized by ascorbic acid on chemically modified glass surface has been studied. 3‐[2‐(2‐Aminoethylamino)ethylamino]propyl‐trimethoxysilane (AMPTS), N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilan, and 3‐trimethoxysilyl‐1‐propanethiol (MSPT) were used as surface modifying agents. To improve immobilization efficiency, the ammonia solution has been used along with the silane reagents, which assisted to adsorb the metal NPs on glass surface. It was found that AMPTS and MSPT have considerable effect on deposition of Ag and AuNPs on glass substrate. The fabricated thin films were characterized by using UV‐Vis spectroscopy, atomic force microscopy, energy‐dispersive X‐ray spectroscopy and subjected to antimicrobial resistance test. The UV–Vis spectra show a distinctive plasmon resonance absorbance peak for thin films of Au and AgNPs prepared with MSPT and AMPTS, respectively. Atomic force microscopy images indicate that formation of Au and AgNPs with spherical morphology after immobilization on the glass substrate and also the dimensions of NPs on the surface appear larger than those observed in the parent colloidal solution. Energy‐dispersive X‐ray spectroscopy measurements confirmed the presence of silver and gold on the modified glass surface, and elemental composition was measured. The Au and AgNPs thin films show antibacterial activity against gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacteria in comparison with a blank sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Highly oriented pyrolytic graphite (HOPG) and graphene grown on Ni (Ni‐Gra) or Cu (Cu‐Gra) by chemical vapour deposition were modified with thick anthraquinone (AQ) films (7?60 nm) by redox grafting of the pertinent diazonium salt. Glassy carbon (GC) electrodes were used for comparison. The AQ‐modified GC electrodes showed excellent blocking properties towards the Fe(CN)63?/4? redox probe, although it was noted that in the case of Ni‐Gra and Cu‐Gra, the blocking ability depended strongly on the underlying substrate. Oxygen reduction studies revealed good electrocatalytic activity of AQ‐modified HOPG, Ni‐Gra, and Cu‐Gra, compared with the bare electrodes.  相似文献   

7.
《Electroanalysis》2003,15(11):987-990
The electrochemical quartz crystal impedance (EQCI) technique has been applied to investigate glucose oxidation on bare and Ni(OH)2‐modified Au electrodes in 0.2 mol L?1 KOH aqueous solution. The EQCI responses suggest different contributions of H+‐release and OH?‐incorporation reactions of the Ni(OH)2‐film redox process in 0.2 mol L?1 aqueous KOH at different potentials. Glucose adsorption on the Ni(OH)2‐modified Au electrode was studied. A mechanism for potential cyclic redox process of glucose at Ni(OH)2‐modified Au electrode is suggested, mainly based on a comparative EQCI analysis with direct glucose oxidation on bare gold and glucose ad‐/desorption on Ni(OH)2 film.  相似文献   

8.
Electrocatalysis of water oxidation by 1.54 nm IrOx nanoparticles (NPs) immobilized on spectroscopic graphite electrodes was demonstrated to proceed with a higher efficiency than on all other, hitherto reported, electrode supports. IrOx NPs were electrodeposited on the graphite surface, and their electrocatalytic activity for water oxidation was correlated with the surface concentrations of different redox states of IrOx as a function of the deposition time and potential. Under optimal conditions, the overpotential of the reaction was reduced to 0.21 V and the electrocatalytic current density was 43 mA cm?2 at 1 V versus Ag/AgCl (3 M KCl) and pH 7. These results beneficially compete with previously reported electrocatalytic oxidations of water by IrOx NPs electrodeposited onto glassy carbon and indium tin oxide electrodes and provide the basis for the further development of efficient IrOx NP‐based electrocatalysts immobilized on high‐surface‐area carbon electrode materials.  相似文献   

9.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

10.
《中国化学会会志》2017,64(11):1308-1315
In this study, the galvanic displacement reaction between silver and AuCl4 was carried out to synthesize a series of silver nanowire (Ag NW) @ gold nanoparticle (Au NP) hybrid nanowires. The influence of Ag NW @ Au NP hybrid nanowires on the fluorescence properties of the poly (3‐hexylthiophene) (P3HT) was investigated. The particle sizes of Au NPs on the hybrid nanowires could be adjusted by varying the reaction time and the concentration of the HAuCl4 solution. Furthermore, steady‐state fluorescence measurements showed that the fluorescence intensity of the P3HT films was higher on various Ag NW @ Au NP hybrid nanowires compared to that on a bare silicon substrate. This was due to the increase in the intensity of electromagnetic field by the localized surface plasmon resonances of Au NPs and surface plasmon polaritons of Ag NWs from the hybrid nanowires. The results were further confirmed by the Raman spectra of the P3HT films on different substrates.  相似文献   

11.
The simple, fast and highly sensitive anodic stripping voltammetric detection of As(III) at a gold (Au) nanoparticle‐modified glassy carbon (GC) (nano‐Au/GC) electrode in HCl solution was extensively studied. The Au nanoparticles were electrodeposited onto GC electrode using chronocoulometric technique via a potential step from 1.1 to 0 V vs. Ag|AgCl|NaCl (sat.) in 0.5 M H2SO4 containing Na[AuCl4] in the presence of KI, KBr, Na2S and cysteine additives. Surfaces of the resulting nano‐Au/GC electrodes were characterized with cyclic voltammetry. The performances of the nano‐Au/GC electrodes, which were prepared using different concentrations of Na[AuCl4] (0.05–0.5 mM) and KI additive (0.01–1.0 mM) at various deposition times (10–30 s), for the voltammetric detection of As(III) were examined. After the optimization, a high sensitivity of 0.32 mA cm?2 μM?1 and detection limit of 0.024 μM (1.8 ppb) were obtained using linear sweep voltammetry.  相似文献   

12.
Nanotechnology has become one of the most exciting frontier fields in analytical chemistry. The huge interest in nanomaterials, for example in chemical sensors and catalysis, is driven by their many desirable properties. Although metal is a poor catalyst in bulk form, nanometre-sized particles can exhibit excellent catalytic activity due to their relative high surface area-to-volume ratio and their interface-dominated properties, which significantly differ from those of the bulk material. The integration of metal nanoparticles into thin film of permselective membrane is particularly important for various applications, for example in biological sensing and in electrocatalysis. We have already established different techniques to design permselective membrane-coated chemically modified electrodes with incorporated redox molecules for electrocatalytic, electrochromic and sensor applications. Recently, we have prepared nanostructured platinum and copper (represented Mnano, M = Pt and Cu) modified GC/Nafion electrodes (GC/Nf/Mnano) and characterized by using AFM, XPS, XRD and electrochemical techniques. The nanostructured Mnano modified electrodes were utilized for efficient electrocatalytic selective oxidation of neurotransmitter molecules in the presence of interfering species such as ascorbic acid (AA) and uric acid (UA). It has been also shown that the modified electrodes could be used as sensors for the detection of submicromolar concentrations of biomolecules with practical applications to real samples such as blood plasma and dopamine hydrochloride injection solution. The GC/Cunano electrode has been used for catalytic reduction of oxygen.  相似文献   

13.
Au nanoparticles (NPs) were synthesized in the one-pot procedure in water at room temperature with the wheel-shaped VV-VIV mixed-valence tungstovanadate [P8W48O184{V4VV2IVO12(H2O)2}2]32− (V12) acting as both reducing and stabilizing agents. The V12 stabilized Au NPs (Au@V12 NPs) were characterized by SEM, TEM, DLS, UV-vis spectroscopy, XPS, and XRD analyses and the negatively charged surface of the Au@V12 NPs was proved by the zeta potential analysis. Based on the layer-by-layer assembly (LbL), the Au@V12 NPs-containing multilayer films have been fabricated on ITO-coated glass slide and quartz substrates with poly(ethyleneimine) (PEI). The regular growth of the multilayer films was monitored by UV-vis spectroscopy and cyclic voltammetry, the composition was characterized by XPS. The Au@V12 NPs based composite films showed electrocatalytic activities towards the reduction of dioxygen and the oxidation of methanol. This approach is expected to open the way towards procedures aimed at the one-step fabrication of Au NPs and polyoxometalates (POMs) into the multilayer films.  相似文献   

14.
In this study, an available and inexpensive graphite substrate, was easily modified with Ni/Cr nanoparticles via electrodeposition technique in a very short time (3 min) and used as an electrocatalyst for glucose oxidation in alkaline solution. Graphite electrode modified with Ni/Cr nanoparticles demonstrated an outstanding electrocatalytic performance to glucose oxidation in comparison to examined Ni‐based electrodes or even different materials in other reports. It is noteworthy to mention that adding a little Cr led to a synergistic effect with Ni; accordingly, the presence of Cr not only resulted in a greater adsorption of glucose molecules by chromium oxide but also boosted conductivity of the nickel oxide because of the enhancement of Ni(III) amount. The electrochemical studies were performed by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The morphology and structure of catalyst layer was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and energy dispersive x‐ray spectroscopy (EDS). The linear range of the electrode by cyclic voltammetry was between 2–31 mM with a high sensitivity of 2094 μA cm?2 mM?1. The repeatability and reproducibility of the proposed electrode was examined in glucose solution which were 0.3 % and 4.7 %, respectively. According to the low cost, ease and fast preparation, good repeatability and high sensitivity, this electrode can be a good candidate for nonenzymatic glucose oxidation.  相似文献   

15.
葡萄糖在纳米金修饰金电极上电化学行为研究   总被引:1,自引:0,他引:1  
利用电还原氯金酸制备了纳米金(Nano-gold,NG)修饰Au电极。该电极对葡萄糖有催化作用,可能是由于纳米金降低了OH-表面吸附能,增加了OH-在电极表面的吸附量。通过循环伏安法研究了扫描速度、温度、本体浓度和溶液pH值对葡萄糖氧化的影响。  相似文献   

16.
Three‐dimensional nanostructured metallic substrates for enhanced vibrational spectroscopy are fabricated by self‐assembly. Nanostructures consisting of one to 20 depositions of 13 nm‐diameter Au nanoparticles (NPs) on Au films are prepared and characterized by means of AFM and UV/Vis reflection–absorption spectroscopy. Surface‐enhanced polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) is observed from Au NPs modified by the probe molecule 4‐hydroxythiophenol. The limitation of this kind of substrate for surface‐enhanced PM‐IRRAS is discussed. The surface‐enhanced Raman scattering (SERS) from the same probe molecule is also observed and the effect of the number of Au‐NP depositions on the SERS efficiency is studied. The SERS signal from the probe molecule maximizes after 11 Au‐NP depositions, and the absolute SERS intensities from different batches are reproducible within 20 %. In situ electrochemical SERS measurements show that these substrates are stable within the potential window between ?800 and +200 mV (vs. Ag/AgCl/sat. Cl?).  相似文献   

17.
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 microm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1)(or k(mt) > 1.0 cm s(-1)) are observed at 50 microm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 microm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 microm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.  相似文献   

18.
Nickel‐modified glassy carbon electrode (GC/Ni) prepared by galvanostatic deposition was used for the electrocatalytic oxidation of glucose in alkaline solutions where different electrochemical methods were employed. In cyclic voltammetry studies, in the presence of glucose an increase in the peak current of the oxidation of nickel hydroxide is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of glucose is being catalyzed through mediated electron transfer across the nickel hydroxide layer comprising nickel ions of various valence states. Under the chronoamperometric regime, the reaction followed a Cottrellian behavior and the diffusion coefficient of glucose was found to be 8 × 10?6 cm2 s?1. A mechanism based on the electrochemical generation of Ni3+‐active sites and their subsequent consumptions by glucose has been discussed, and kinetic parameters have been derived. The heterogeneous rate constants for the oxidation of glucose at the surface of modified electrodes were determined by rotating disk electrode using the Koutecky–Levich plots, which are in agreement with the data obtained by chronoamperometry. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 712–721, 2012  相似文献   

19.
The current response of the collision of ascorbic acid‐stabilized copper (Cu) single nanoparticles (NPs) on a gold (Au) ultramicroelectrode (UME) surface was observed by using an electrocatalytic amplification method. Here, the glucose oxidation electrocatalyzed by oxidized Cu NPs was used as the indicating reaction. In this system, the NP collision signals were obtained simultaneously by both direct particle electrolysis and electrocatalytic amplification. For example, when the applied potential was high enough for Cu NP oxidation, a blip response combined with a staircase response was observed as a current signal. The blip part in the single Cu NP collision signal indicates the self‐oxidation of a Cu NP, and the staircase part indicates the steady‐state electrocatalytic reaction by oxidized Cu NP.  相似文献   

20.
《Electroanalysis》2018,30(8):1811-1819
Novel copper‐palladium nanoparticles modified glassy carbon electrodes (Cu−Pd/GC) with enhanced nonenzymatic sensing for glucose were facilely prepared by one‐step electrodeposition. The structure and composition of the prepared nanoparticles were characterized by XRD, SEM, TEM and EDS, respectively. The electrode modified process was characterized by electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometric experiments were used to evaluate the electrocatalytic activities of the electrodes toward glucose. The surface morphology and the electrocatalytic activities of Cu−Pd/GC was compared to Pd and Cu nanoparticles modified glassy carbon electrodes (Pd/GC and Cu/GC), respectively. Thanks to homogeneous distribution of Cu−Pd nanoparticles and the synergistic effect of Cu and Pd atoms, Cu−Pd/GC exhibited the highest sensitivity (298 μA mM−1 cm−2) and the widest linear amperometric response (0.01 mM to 9.6 mM, R2=0.996) toward glucose compared to Pd/GC and Cu/GC. The detection limit of Cu−Pd/GC was 0.32 μM (S/N=3). In addition, the as‐prepared Cu−Pd/GC glucose sensor also exhibited exceptional capabilities of anti‐interference, reproducibility and long‐term stability. The as‐prepared sensor was also evaluated for determination of glucose concentration in human blood serum samples, which exhibited high reliability and accuracy, having great potential in clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号