首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
On a roll : Attachment of flexible coils to the middle of a rigid rod generates T‐shaped rod–coil molecules that self‐assemble into layers that roll up to form filled cylindrical and hollow tubular scrolls, depending on the coil length, in the solid state (see picture); the rods are arranged parallel to the layer plane.

  相似文献   


3.
Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high‐performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self‐assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self‐assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self‐assembly of nanofilaments.  相似文献   

4.
5.
Photochromic diarylethene derivatives having different lengths and numbers of poly(ethylene glycol) side chains were synthesized and their photochromic property and self‐assembling behavior were investigated. The self‐assembling behavior of the derivatives strongly depends upon the ratio between the hydrophobic core and the amphiphilic side chain. According to UV/Vis absorption spectroscopy, CD spectroscopy, and dynamic light scattering experiments, these derivatives showed different size distribution of the assembled structures and different solubility in water. The intensity of the induced CD signal, which was observed in the closed‐ring isomer, was the largest for the molecule having two hexaethylene glycol side chains. The relationship between the core‐chain ratio and regularity of the self‐assembled structure has been investigated.  相似文献   

6.
7.
A new modular approach to an artificial light‐harvesting antenna system is presented. The approach involves the hierarchical self‐assembly of porphyrin acceptor molecules to G‐quadruplexes tethered to coumarin donor moieties.  相似文献   

8.
9.
A series of pyrene/phenanthrene‐fused furan derivatives ( 1 – 8 ) were synthesized by a simple condensation reaction between pyrene‐4,5‐diketone/phenanthrenequinone and substituted phenol/naphthol in the presence of trifluoromethanesulfonic acid in 1,2‐dichlorobenzene heated at reflux. The formed compounds can emit strong blue light in organic solvents. Additionally, the self‐assembly behaviors of two of the compounds ( 3 and 5 ) were studied through re‐precipitation method and the resulting nanostructures were characterized by UV/Vis, fluorescence spectra, and field‐emission scanning electron microscopy (FESEM). The findings showed that the shape and size of compounds 3 and 5 could be tuned by the ratio of THF and hexadecyl trimethyl ammonium bromide (CTAB) solution in water.  相似文献   

10.
In covalent polymerization, a single monomer can result in different polymer structures due to positional, geometric, or stereoisomerism. We demonstrate that strong hydrophobic interactions result in stable noncovalent polymer isomers that are based on the same covalent unit (amphiphilic perylene diimide). These isomers have different structures and electronic/photonic properties, and are stable in water, even upon prolonged heating at 100 °C. Such combination of covalent‐like stability together with structural/functional variation is unique for noncovalent polymers, substantially advancing their potential as functional materials.  相似文献   

11.
Self‐assembly of carbonate linkage bearing naphthalene diimides (NDI) showed unusually red‐shifted excimer emission at approximately 560 nm. On the other hand, the ether linkers showed usual excimers at around 520 nm, highlighting the role of the carbonate group in tuning the molecular organization and the resultant photophysical properties of NDI.  相似文献   

12.
Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles generates new nanostructures, which have unforeseen collective, intrinsic physical properties. These properties can be exploited for multipurpose applications in nanoelectronics, spintronics, sensors, etc. This review surveys different techniques, currently employed and being developed, for assembling nanoparticles in to ordered nanostructures. In this endeavour, the principles and methods involved in the development of assemblies are discussed. Subsequently, different possibilities of nanoparticle‐based nanostructures, obtained in multi‐dimensions, are presented.  相似文献   

13.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

14.
Two‐component systems capable of self‐assembling into soft gel‐phase materials are of considerable interest due to their tunability and versatility. This paper investigates two‐component gels based on a combination of a L ‐lysine‐based dendron and a rigid diamine spacer (1,4‐diaminobenzene or 1,4‐diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular‐scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the “solid‐like” gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the “liquid‐like” phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two‐component gels assembled in a component‐selective manner, with the dendron preferentially recognising 1,4diaminobenzene (>70 %), when similar competitor diamines (1,2‐ and 1,3‐diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based on 1,4‐diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based on 1,4‐diaminocyclohexane, indicative of controlled and selective π–π interactions within a three‐component assembly. As such, the results in this paper demonstrate how component selection processes in two‐component gel systems can control hierarchical self‐assembly.  相似文献   

15.
Condensate microdrop self‐propelling (CMDSP) surfaces have attracted intensive interest. However, it is still challenging to form metal‐based CMDSP surfaces. We design and fabricate a type of copper‐based CMDSP porous nanoparticle film. An electrodeposition method based on control over the preferential crystal growth of isotropic nanoparticles and synergistic utilization of tiny hydrogen bubbles as pore‐making templates is adopted for the in situ growth of cerium oxide porous nanoparticle films on copper surfaces. After characterizing their microscopic morphology, crystal structure and surface chemistry, we explore their CMDSP properties. The nanostructure can realize the efficient ejection of condensate microdrops with sizes below 50 μm.  相似文献   

16.
Solid scrolls are reversibly formed by self‐assembly of rod‐shaped molecules with laterally attached coil units, in contrast to the layered structures formed from self‐assembly of planar molecules. As described by M. Lee and co‐workers in their Communication on page 1664 ff., the core structure of the scrolls, which are either filled cylinders or hollow tubes, can be controlled by variation of the length of the coil unit. The cover picture shows aligned tubular scrolls displaying well‐defined in‐plane ordering of the rod segments.

  相似文献   


17.
18.
19.
Hierarchical nanoporous structures are fabricated by adsorption of micelles of diblock copolymer‐templated Au‐nanoparticles onto a hydrophilic solid substrate. Gold nanoparticles are prepared using micelles (19 nm) of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) as nanoreactors. Deposition of thin films of the micellar solution, modified with a non‐selective solvent (THF), on hydrophilic surfaces leads to the formation of hierarchical nanoporous morphologies. The thin films exhibit two different pore diameters and a total pore density of 15 × 108 holes per cm2. The structure was analyzed in terms of topography and chemical composition using AFM, TEM and XPS measurements. The PS‐b‐P4VP template was subsequently removed by oxygen plasma etching, to leave behind metallic nanopores that mimic the original thin film morphology.

  相似文献   


20.
The hierarchical self‐assembly of an amphiphilic block copolymer, poly(N,N‐dimethylacrylamide)‐block‐polystyrene with a very short hydrophilic block (PDMA10b‐PS62), in large granular nanoparticles is reported. While these nanoparticles are stable in water, their disaggregation can be induced either mechanically (i.e., by applying a force via the tip of the cantilever of an atomic force microscope (AFM)) or by partial hydrolysis of the acrylamide groups. AFM force spectroscopy images show the rupture of the particle as a combination of collapse and flow, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of partly hydrolyzed nanoparticles provide a clear picture of the granular structure.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号