首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binuclear polypyridine ruthenium compounds have been shown to slowly intercalate into DNA, following a fast initial binding on the DNA surface. For these compounds, intercalation requires threading of a bulky substituent, containing one RuII, through the DNA base‐pair stack, and the accompanying DNA duplex distortions are much more severe than with intercalation of mononuclear compounds. Structural understanding of the process of intercalation may greatly gain from a characterisation of the initial interactions between binuclear RuII compounds and DNA. We report a structural NMR study on the binuclear RuII intercalator Λ,Λ‐B (Λ,Λ‐[μ‐bidppz(bipy)4Ru2]4+; bidppz=11,11′‐bis(dipyrido[3,2‐a:2′,3′‐c]phenazinyl, bipy = 2,2′‐bipyridine) mixed with the palindromic DNA [d(CGCGAATTCGCG)]2. Threading of Λ,Λ‐B depends on the presence and length of AT stretches in the DNA. Therefore, the latter was selected to promote initial binding, but due to the short stretch of AT base pairs, final intercalation is prevented. Structural calculations provide a model for the interaction: Λ,Λ‐B is trapped in a well‐defined surface‐bound state consisting of an eccentric minor‐groove binding. Most of the interaction enthalpy originates from electrostatic and van der Waals contacts, whereas intermolecular hydrogen bonds may help to define a unique position of Λ,Λ‐B. Molecular dynamics simulations show that this minor‐groove binding mode is stable on a nanosecond scale. To the best of our knowledge, this is the first structural study by NMR spectroscopy on a binuclear Ru compound bound to DNA. In the calculated structure, one of the positively charged Ru2+ moieties is near the central AATT region; this is favourable in view of potential intercalation as observed by optical methods for DNA with longer AT stretches. Circular dichroism (CD) spectroscopy suggests that a similar binding geometry is formed in mixtures of Λ,Λ‐B with natural calf thymus DNA. The present minor‐groove binding mode is proposed to represent the initial surface interactions of binuclear RuII compounds prior to intercalation into AT‐rich DNA.  相似文献   

2.
The crystal structure of the Δ,Δ enantiomer of the binuclear “light‐switch” ruthenium complex [μ‐(11,11′‐bidppz)(1,10‐phenanthroline)4 Ru2]4+ bound to the oligonucleotide d(CGTACG) shows that one dppz moiety of the dumbbell‐like compound inserts into the DNA stack through the extrusion of an AT base pair. The second dppz moiety recruits a neighboring DNA molecule, and the complex thus cross‐links two adjacent duplexes by bridging their major grooves.  相似文献   

3.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

4.
The complex ion [FeIII2(μ‐O)(phen)4(H2O)2]4+ ( 1 ) (phen = 1,10‐phenanthroline) and its hydrolytic derivatives [FeIII2(μ‐O)(phen)4(H2O)(OH)]3+ ( 1a ) and [FeIII2(μ‐O)(phen)4‐ (OH)2]2+ ( 2a ) coexist in rapid equilibria in the range pH 4.23–5.35 in the presence of excess phenanthroline (pKa1 = 3.71±0.03, pKa2 = 5.28± 0.07). The solution reacts quantitatively with I to produce [Fe(phen)3]2+ and I2. Only 1 but none of its hydrolytic derivatives is kinetically active. Both inner and outer sphere pathways operate. The observed rate constants show second‐order dependence on the concentration of iodide, while the dependence on [H+] is complex in nature. Added Cl inhibits the formation of adduct with I and thus retards the rate of inner sphere path, leading to a rate saturation at high [Cl], where only the outer sphere mechanism is active. Kinetic data indicate that simultaneous presence of two I in the vicinity of diiron core is necessary for the reduction of 1 . © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 737–743, 2005  相似文献   

5.
The salts [Cu(phen)3][Cu(pheida)2]·10H2O ( 1 ) and [(phen)2Cu(μ‐BAAP)Cu(μ‐BAAP)Cu(phen)2][Cu(BAAP)2]·8.5H2O ( 2 ) (H2pheida = N‐phenetyl‐iminodiacetic acid, H2BAAP = N‐benzylaminoacetic‐2‐propionic acid, phen = 1, 10‐phenanthroline) have been prepared and studied by thermal, spectroscopic and X‐ray diffraction methods. 1 has the rather unusual [Cu(phen)3]2+ cation and two non‐equivalent [Cu(pheida)2]2— anions with a coordination type 4+2 but quite different tetragonality (T = 0.848 and 0.703 for anions 1 and 2, respectively). The crystal consists of multi‐π, π‐stacked chains (…anion 2 — cation — cation — anion 2…) connected by hydrophobic interactions; these chains build channels which are partially filled by anions 1 and water molecules. In contrast, compound 2 has a mixed‐ligand trinuclear cation with a bridging central moiety close similar to the counter anion. The formation of such a trinuclear cation is discussed as a consequence of the most advantageous molecular recognition process between [Cu(phen)2(H2O)1 or 2]2+ and [Cu(BAAP)2]2— in solution. In the crystal of 2, multi‐π, π‐stacked arrays of C6‐rings from phen and (BAAP)2— ligands of trinuclear cations generate channels where counter anions and water molecules are located.  相似文献   

6.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

7.
The title compound, [Ru(C12H8N2)3]2[Fe(NCS)4](ClO4)2, crystallizes in a tetragonal chiral space group (P41212) and the assigned absolute configuration of the optically active molecules was unequivocally confirmed. The Δ‐[RuII(phen)3]2+ complex cations (phen is 1,10‐phenanthroline) interact along the 41 screw axis parallel to the c axis, with an Ru...Ru distance of 10.4170 (6) Å, and in the ab plane, with Ru...Ru distances of 10.0920 (6) and 10.0938 (6) Å, defining a primitive cubic lattice. The Fe atom is situated on the twofold axis diagonal in the ab plane. The supramolecular architecture is supported by C—H...O interactions between the [RuII(phen)3]2+ cation and the disordered perchlorate anion. This study adds to the relatively scarce knowledge about intermolecular interactions between [Ru(phen)3]2+ ions in the solid state, knowledge that eventually may also lead to a better understanding of the solution state interactions of this species; these are of immense interest because of the photochemical properties of these ions and their interactions with DNA.  相似文献   

8.
The ligand pteridino[6,7‐f] [1,10]phenanthroline‐11,13‐diamine (ppn) and its RuII complexes [Ru(bpy)2(ppn)]2+ ( 1 ; bpy=2,2′‐bipyridine) and [Ru(phen)2(ppn)]2+ ( 2 ; phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis, electrospray MS, 1H‐NMR, and cyclic voltammetry. The DNA‐binding behaviors of 1 and 2 were studied by spectroscopic and viscosity measurements. The results indicate that both complexes strongly bind to calf‐thymus DNA in an intercalative mode, with DNA‐binding constants Kb of (1.7±0.4)?106 M ?1 and (2.6±0.2)?106 M ?1, respectively. The complexes 1 and 2 exhibit excellent DNA‐‘light switch’ performances, i.e., they do not (or extremely weakly) show luminescence in aqueous solution at room temperature but are strongly luminescent in the presence of DNA. In particular, the experimental results suggest that the ancillary ligands bpy and phen not only have a significant effect on the DNA‐binding affinities of 1 and 2 but also have a certain effect on their spectral properties. [Ru(phen)2(ppn)]2+( 2 ) might be developed into a very prospective DNA‐‘light switch’ complex. To explain the DNA‐binding and spectral properties of 1 and 2 , theoretical calculations were also carried out applying the DFT/TDDFT method.  相似文献   

9.
The complete sequence of reactions in the base‐promoted reduction of [{RuII(CO)3Cl2}2] to [RuI2(CO)4]2+ has been unraveled. Several μ‐OH, μ:κ2‐CO2H‐bridged diruthenium(II) complexes have been synthesized; they are the direct results of the nucleophilic activation of metal‐coordinated carbonyls by hydroxides. The isolated compounds are [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐OH)(NPF‐Am)2][PF6] ( 1 ; NPF‐Am=2‐amino‐5,7‐trifluoromethyl‐1,8‐naphthyridine) and [Ru2(CO)4(μ:κ2C,O‐CO2H)(μ‐OH)(NP‐Me2)2][BF4]2 ( 2 ), secured by the applications of naphthyridine derivatives. In the absence of any capping ligand, a tetranuclear complex [Ru4(CO)8(H2O)23‐OH)2(μ:κ2C,O‐CO2H)4][CF3SO3]2 ( 3 ) is isolated. The bridging hydroxido ligand in 1 is readily replaced by a π‐donor chlorido ligand, which results in [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐Cl)(NP‐PhOMe)2][BF4] ( 4 ). The production of [Ru2(CO)4]2+ has been attributed to the thermally induced decarboxylation of a bis(hydroxycarbonyl)–diruthenium(II) complex to a dihydrido–diruthenium(II) species, followed by dinuclear reductive elimination of molecular hydrogen with the concomitant formation of the RuI? RuI single bond. This work was originally instituted to find a reliable synthetic protocol for the [Ru2(CO)4(CH3CN)6]2+ precursor. It is herein prescribed that at least four equivalents of base, complete removal of chlorido ligands by TlI salts, and heating at reflux in acetonitrile for a period of four hours are the conditions for the optimal conversion. Premature quenching of the reaction resulted in the isolation of a trinuclear RuI2RuII complex [{Ru(NP‐Am)2(CO)}{Ru2(NP‐Am)2(CO)2(μ‐CO)2}(μ33C,O,O′‐CO2)][BF4]2 ( 6 ). These unprecedented diruthenium compounds are the dinuclear congeners of the water–gas shift (WGS) intermediates. The possibility of a dinuclear pathway eliminates the inherent contradiction of pH demands in the WGS catalytic cycle in an alkaline medium. A cooperative binuclear elimination could be a viable route for hydrogen production in WGS chemistry.  相似文献   

10.
A series of [{(terpy)(bpy)Ru}(μ‐O){Ru(bpy)(terpy)}]n+ ( [RuORu]n+ , terpy=2,2′;6′,2′′‐terpyridine, bpy=2,2′‐bipyridine) was systematically synthesized and characterized in three distinct redox states (n=3, 4, and 5 for RuII,III2 , RuIII,III2 , and RuIII,IV2 , respectively). The crystal structures of [RuORu]n+ (n=3, 4, 5) in all three redox states were successfully determined. X‐ray crystallography showed that the Ru? O distances and the Ru‐O‐Ru angles are mainly regulated by the oxidation states of the ruthenium centers. X‐ray crystallography and ESR spectra clearly revealed the detailed electronic structures of two mixed‐valence complexes, [RuIIIORuIV]5+ and [RuIIORuIII]3+ , in which each unpaired electron is completely delocalized across the oxo‐bridged dinuclear core. These findings allow us to understand the systematic changes in structure and electronic state that accompany the changes in the redox state.  相似文献   

11.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

12.
The ligands L1 and L2 both form separable dinuclear double‐stranded helicate and mesocate complexes with RuII. In contrast to clinically approved platinates, the helicate isomer of [Ru2( L1 )2]4+ was preferentially cytotoxic to isogenic cells (HCT116 p53?/?), which lack the critical tumour suppressor gene. The mesocate isomer shows the reverse selectivity, with the achiral isomer being preferentially cytotoxic towards HCT116 p53+/+. Other structurally similar RuII‐containing dinuclear complexes showed very little cytotoxic activity. This study demonstrates that alterations in ligand or isomer can have profound effects on cytotoxicity towards cancer cells of different p53 status and suggests that selectivity can be “tuned” to either genotype. In the search for compounds that can target difficult‐to‐treat tumours that lack the p53 tumour suppressor gene, [Ru2( L1 )2]4+ is a promising compound for further development.  相似文献   

13.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

14.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

15.
We recently reported that ruthenium complexes, with general structure [mu-bidppz(bipy)4Ru2](4+) (B) or [mu-bidppz(phen)4Ru2](4+) (P) (bidppz=11,11'-bi(dipyrido[3,2- a:2',3'-c]phenazinyl)), show extreme kinetic selectivity for long AT tracts over mixed-sequence calf thymus DNA (ct-DNA), a selectivity that also varies markedly with the size (between B and P) and sense of chirality of the complex. Earlier studies, exploiting the great increase in luminescence intensity when the compound intercalates, have yielded complex kinetics indicating the presence of both first- and second-order processes. Even with a homogeneous DNA sequence, such as poly(dAdT)2, the luminescence kinetics generally requires more than a single exponential for a satisfactory fit. We here reveal that at least part of the complexity is a result of the extreme sensitivity of the effective quantum yield of the complexes, so that the luminescence trajectories also reflect subtle variations in the environment and binding geometry that the complex is sampling on its path to its final binding site. By monitoring the rearrangement process using circular dichroism (CD), we show that threading of both enantiomers of B and P into poly(dAdT)2 is effectively a monoexponential process, as expected if the compounds are not affecting each other during the intercalation process. Thus, the complex luminescence trajectories may be explained by slow relaxations in the binding geometry (DNA conformation) and associated changes in the environment of the entering complexes. To further disentangle the intriguing features of the threading intercalation kinetics, and how they may depend on the flexibility and size of the ruthenium complexes, we have also designed and studied two new ruthenium complexes, [mu-dtpf(phen)4Ru2](4+) (F) (dtpf=4,5,9,12,16,17,21,25-octaaza-23 H-ditriphenyleno[2,3-b:2,3-h]fluorene), in which the bridging ligand is made totally rigid, and [mu-bidppz([12]aneS4) 2Ru2](4+) (S), which has less bulky, nonaromatic ancillary ligands. The threading of F into poly(dAdT)2, also found to be a monoexponential process, is about 3 times slower than for P, indicating that the flexibility of the bridging ligand is an important factor for the intercalation rate. Surprisingly, in contrast to all other compounds, S requires two exponentials to fit its binding kinetics as monitored by CD. Also surprisingly, in view of the smaller steric bulk, even the fastest phase is roughly 2 times slower for S than for B and P. Thus, not only the size of the ancillary ligand but also other properties that can influence the energy landscape of the threading path are rate-determining factors. With mixed-sequence ct-DNA, threading of B and that of P are both multiphasic processes when monitored with CD as well as with luminescence. The rate constants for threading into ct-DNA show much larger variations between complexes than for poly(dAdT)2, confirming earlier results based on luminescence data.  相似文献   

16.
Several classes of copper complexes are known to induce oxidative DNA damage that mediates cell death. These compounds are potentially useful anticancer agents and detailed investigation can reveal the mode of DNA interaction, binding strength, and type of oxidative lesion formed. We recently reported the development of a DNA electrochemical biosensor employed to quantify the DNA cleavage activity of the well-studied [Cu(phen)2]2+ chemical nuclease. However, to validate the broader compatibility of this sensor for use with more diverse—and biologically compatible—copper complexes, and to probe its use from a drug discovery perspective, analysis involving new compound libraries is required. Here, we report on the DNA binding and quantitative cleavage activity of the [Cu(TPMA)(N,N)]2+ class (where TPMA = tris-2-pyridylmethylamine) using a DNA electrochemical biosensor. TPMA is a tripodal copper caging ligand, while N,N represents a bidentate planar phenanthrene ligand capable of enhancing DNA interactions through intercalation. All complexes exhibited electroactivity and interact with DNA through partial (or semi-) intercalation but predominantly through electrostatic attraction. Although TPMA provides excellent solution stability, the bulky ligand enforces a non-planar geometry on the complex, which sterically impedes full interaction. [Cu(TPMA)(phen)]2+ and [Cu(TPMA)(DPQ)]2+ cleaved 39% and 48% of the DNA strands from the biosensor surface, respectively, while complexes [Cu(TPMA)(bipy)]2+ and [Cu(TPMA)(PD)]2+ exhibit comparatively moderate nuclease efficacy (ca. 26%). Comparing the nuclease activities of [Cu(TPMA)(phen)] 2+ and [Cu(phen)2]2+ (ca. 23%) confirms the presence of TPMA significantly enhances chemical nuclease activity. Therefore, the use of this DNA electrochemical biosensor is compatible with copper(II) polypyridyl complexes and reveals TPMA complexes as a promising class of DNA damaging agent with tuneable activity due to coordinated ancillary phenanthrene ligands.  相似文献   

17.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

18.
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)26‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions.  相似文献   

19.
The electrochemical behavior of aquabis(1,10‐phenanthroline)copper(II) perchlorate [Cu(H2O)(phen)2]·2ClO4, where phen=1,10‐phenanthroline, on binding to DNA at a glassy carbon electrode (GCE) and in solution, was described. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed that [Cu(H2O)(phen)2]2+ had excellent electrochemical activity on the GCE with a couple of quasi‐reversible redox peaks. The interaction mode between [Cu(H2O)(phen)2]2+ and double‐strand DNA (dsDNA) was identified to be intercalative binding. An electrochemical DNA biosensor was developed with covalent immobilization of human immunodeficiency virus (HIV) probe for single‐strand DNA (ssDNA) on the modified GCE. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay. With this approach, a sequence of the HIV could be quantified over the range from 7.8×10?9 to 3.1×10?7 mol·L?1 with a linear correlation of γ=0.9987 and a detection limit of 1.3×10?9 mol·L?1.  相似文献   

20.
The reaction of the trans‐hyponitrito complex [Ru2(CO)4(μ‐η2‐ONNO)(μ‐H)(μ‐PtBu2)(μ‐dppen)] ( 1 , dppen = Ph2PC(=CH2)PPh2) with tetrafluorido boric acid afforded the new complex salt [Ru2(CO)4(μ‐η2‐ONNOH)(μ‐H)(μ‐PtBu2)(μ‐dppen)]BF4 ( 2 ) containing the monoprotonate hyponitrous acid as the ligand in the cationic complex. Complex 1 showed a nucleophilic reactivity towards the trimethyloxonium cation resulting in the monoester derivative of the hyponitrous acid [Ru2(CO)4(μ‐η2‐ONNOMe)(μ‐H)(μ‐PtBu2)(μ‐dppen)]BF4 ( 3 ). During heating of compound 2 in ethanol under reflux for a short time nitrous oxide was liberated affording unexpectedly a new tridentate 2, 2‐bis(diphenylphosphanyl)ethanolato ligand formed by an intramolecular attack of an intermediate hydroxido ligand towards the unsaturated carbon carbon double bond in the bridging dppen ligand. Thus the complex salt [Ru2(CO)4{μ‐η3‐OCH2CH(PPh2)2}(μ‐H)(μ‐PtBu2)]BF4 ( 4 ) was formed in good yields. The new compounds 2 , 3 , and 4 were characterized by spectroscopic means as well as their molecular structures were determined in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号