首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hitherto unknown Au→Al interactions have been evidenced upon coordination of the geminal phosphorus–aluminum Lewis pair Mes2PC(?CHPh)AltBu2 (Mes=2,4,6‐trimethylphenyl). Four different gold(I) complexes featuring alkyl (Me), aryl (Ph, C6F5), and alkynyl (C?CPh) co‐ligands have been prepared. X‐ray diffraction analyses show that P→Au→Al bridging coordination induces noticeable bending of the ligand (the PCAl bond angle shrinks by 13°). This new type of transition metal→Lewis acid interaction has been analyzed by DFT calculations.  相似文献   

2.
The title compound, N‐(2‐pyridylmethyl)salicylamide ( 1 ), was synthesized by ester aminolysis of methyl salicylate and 2‐picolylamine. In the presence of triethylamine as a supporting base, the salicylamide moiety reacts with the organodichlorosilanes RR′SiCl2 to form the desired six‐membered heterocycles of the type RR′Si–O–(o‐C6H4)–C(=O)N(pic), with pic being the 2‐pyridylmethyl (i.e., 2‐picolyl) moiety and RR′ = Me, Me ( 2a ); Me, Ph ( 2b ); Ph, Ph ( 2c ); Bn, Bn ( 2d ); All, Ph ( 2e ) and Ph, H ( 2f ). Despite the absence of notable ring strain release Lewis acidity (i.e., only a six‐membered chelate is formed by the dianion, and smaller rings are not present in the compound), the poor electron withdrawal from silicon by its C– or H– substituents and the flexible methylene bridge between the salicylamide and the pyridine moiety, the pyridine N donor atom furnishes pentacoordinate silicon coordination spheres in all of these compounds 2a – 2f . The coordination number of the silicon atom was confirmed by single‐crystal X‐ray diffraction analysis for the solid state and by 29Si NMR spectroscopy for the solution state.  相似文献   

3.
Photoredox‐catalyzed reductive difluoromethylation of electron‐deficient alkenes was achieved in one step under tin‐free, mild and neutral conditions. This protocol affords a facile method to introduce RCF2 (R=H, Ph, Me, and CH2N3) groups at sites β to electron‐withdrawing groups. It was found that TTMS (tris(trimethylsilyl)silane) served nicely as both the H‐atom donor and the electron donor in the catalytic cycle. Experimental and DFT computational results provided evidence that RCF2 (R=H, Ph, Me) radicals are nucleophilic in nature.  相似文献   

4.
《Mendeleev Communications》2022,32(6):798-800
N-(Chlorodimethylsilyl)methyl anilides of formula RC(O)N(C6H4X)CH2SiMe2Cl (R = Me, Ph; X = H, Me, Cl) were obtained by the reaction of N-TMS-containing anilides with ClCH2Si(Hal)Me2 (Hal = F, Cl). The silicon atom in these compounds is pentacoordinate according to the results of NMR and X-ray diffraction analysis.  相似文献   

5.
Compounds of Silicon. 154 [1]. Unsaturated Silicon Compounds. 61 [1] Disilenes R*RSi=SiRR* (R* = SitBu3) with Silicon‐Bound Me and Ph Groups R: Formation, Identification, Thermolysis, Structure Dehalogenations of the 1, 2‐disupersilylsilanes R*MeBrSi—SiBrMeR* (gauche : trans 1.15 : 1.00) and R*PhClSi—SiBrPhR* (gauche : trans = 2.7 : 1.0) in THF with equimolar amounts of NaR* (R* = SitBu3 = Supersilyl) lead at —78 °C under exchange of bromine for sodium to the disilanides R*MeBrSi—SiNaMeR* and R*PhClSi—SiNaPhR* which are identified by protonation and bromination (formation of R*RXSi—SiX′RR* with R = Me, X/X′ = Br/H, Br/Br: gauche : trans = 1.15 : 1.00, and R = Ph, X/X′ = Cl/H, Cl/Br: gauche : trans = 2.7 : 10, respectively). These eliminate at about —55 °C NaHal with formation of non‐isolable trans‐R*MeSi=SiMeR* and isolable trans‐R*PhSi=SiPhR*. The intermediate existence of the disilene R*MeSi=SiMeR* could be proved by trapping it with PhC≡CPh (formation of a [2+2] cycloadduct; X‐ray structure analysis). In the absence of trapping agents, R*MeSi=SiMeR* decomposes into a mixture of substances, the main product of which is R*MeHSi—SiMeR*—SiHMeR*. The light yellow disilene R*PhSi=SiPhR* has been characterized by spectroscopy (Raman: ν(Si=Si) = 592 cm—1; UV/VIS: λmax = 398 nm with ∈ = 1560; 29Si‐NMR: δ(>Si=) = 128 ppm) and by X‐ray structure analysis (planar central framework >Si=Si<; Si=Si distance 2.182Å). R*PhSi=SiPhR* is reduced by lithium in THF with formation of a red radical anion which decomposes at room temperature into hitherto non‐identified products. At about 70 °C, R*PhSi=SiPhR* decomposes with intramolecular insertion of the Si=Si group into a C—H bond of a Ph group and with change of configuration of the R* groups, which at first are trans then cis‐positioned (X‐ray structure analysis of the thermolysis product).  相似文献   

6.
Infinite dilution 29Si and 13C NMR chemical shifts were determined from concentration dependencies of the shifts in dilute chloroform and acetone solutions of para substituted O‐silylated phenols, 4‐R‐C6H4‐O‐SiR′2R″ (R = Me, MeO, H, F, Cl, NMe2, NH2, and CF3), where the silyl part included groups of different sizes: dimethylsilyl (R′ = Me, R″ = H), trimethylsilyl (R′ = R″ = Me), tert‐butyldimethylsilyl (R′ = Me, R″ = CMe3), and tert‐butyldiphenylsilyl (R′ = C6H5, R″ = CMe3). Dependencies of silicon and C‐1 carbon chemical shifts on Hammett substituent constants are discussed. It is shown that the substituent sensitivity of these chemical shifts is reduced by association with chloroform, the reduction being proportional to the solvent accessible surface of the oxygen atom in the Si‐O‐C link. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Single‐site, well‐defined, silica‐supported tantallaaziridine intermediates [≡Si‐O‐Ta(η2‐NRCH2)(NMe2)2] [R=Me ( 2 ), Ph ( 3 )] were prepared from silica‐supported tetrakis(dimethylamido)tantalum [≡Si‐O‐Ta(NMe2)4] ( 1 ) and fully characterized by FTIR spectroscopy, elemental analysis, and 1H,13C HETCOR and DQ TQ solid‐state (SS) NMR spectroscopy. The formation mechanism, by β‐H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C?H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N‐alkyl aryl amine substrates being more efficient than N‐dialkyl amines.  相似文献   

8.
Reaction of tetrafluorosilane with tris(2-hydroxyethyl)-and tris(2-trimethylsiloxyethyl)amine results in formation of 1-fluorosilatrane and fluorosilatrane in 75 and 53% yield, respectively. Reaction of tetrafluorosilane with bis(2-trimethylsiloxyethyl)amine and its N-methyl derivative leads to the hitherto unknown 1,1-difluoroquasisilatranes (N → Si) F2Si(OCH2CH2)2NR (R = H, Me) containing donor-acceptor bond N → Si and pentacoordinate silicon atom. The structure of the synthesized compounds was proved by 1H, 13C, 15N, 19F, 29Si NMR and IR spectroscopy.  相似文献   

9.
Preparation, Characterization, and Structure of Functionalized Fluorophosphaalkenes of the Type R3E–P=C(F)NEt2 (R/E = Me/Si, Me/Ge, CF3/Ge, Me/Sn) P‐functionalized 1‐diethylamino‐1‐fluoro‐2‐phosphaalkenes of the type R3E–P=C(F)NEt2 [R/E = Me/Si ( 2 ), Me/Ge ( 3 ), CF3/Ge ( 4 ), Me/Sn ( 5 )] are prepared by reaction of HP=C(F)NEt2 ( 1 , E/Z = 18/82) with R3EX (X = I, Cl) in the presence of triethylamine as base, exclusively as Z‐Isomers. 2–5 are thermolabile, so that only the more stable representatives 2 and 4 can be isolated in pure form and fully characterized. 3 and 5 decompose already at temperatures above –10 °C, but are clearly identified by 19F and 31P NMR‐measurements. The Z configuration is established on the basis of typical NMR data, an X‐ray diffraction analysis of 4 and ab initio calculations for E and Z configurations of the model compound Me3Si–P=C(F)NMe2. The relatively stable derivative 2 is used as an educt for reactions with pivaloyl‐, adamantoyl‐, and benzoylchloride, respectively, which by cleavage of the Si–P bond yield the push/pull phosphaalkenes RC(O)–P=C(F)NEt2 [R = tBu ( 6 ), Ad ( 7 ), Ph ( 8 )], in which π‐delocalization with the P=C double bond occurs both with the lone pair on nitrogen and with the carbonyl group.  相似文献   

10.
New hydrocarbon bridged co-condensation agents of the type RSi(OMe)2(CH2)zC6H4(CH2)z(OMe)2SiR { 3[Ph(1,4-C3D0)2] , z = 3, R = Me; 3[Ph(1,4-C3T0)2] , z = 3, R = OMe; 4[Ph(1,4-C3D0)2] , z = 4, R = Me} were synthesized by hydrosilylation of the corresponding α,ω-dienes CH2=CH–(CH2)z–2–C6H4–(CH2)z–2–CH=CH2 [z = 3 ( 1 ), 4 ( 2 )] with HSiR(OMe)2 (R = Me, OMe). These silane monomers were sol-gel processed, partially with MeSi(OMe)3 ( T 0) to give the polysiloxanes 3 a , 3 b , 4 c , 3 d , 3 e , 4 f , and 3 ab (Table 1, Schemes 2 and 3); D = D type silicon atom (two oxygen neighbors), T = T type of silicon atom (three oxygen neighbors). The relative amounts of T and D silyl species and the degrees of condensation were determined by 29Si and 13C CP/MAS NMR spectroscopic investigations. 29Si and 13C CP/MAS NMR relaxation time studies (TSiH, TCH, T1ρH), and 2 D WISE NMR experiments were applied to get knowledge about the polymer dynamics. For the first time protons of such polysiloxane systems were detected by 1H SPE/MAS NMR measurements in suspension. Mobility studies were carried out in different solvents. Furthermore the swelling capacities of the polymers 3 a , 3 b , and 4 c in different solvents and the BET surface areas of all materials were investigated. SEM micrographs show the morphology of 3 a and 3 b .  相似文献   

11.
The preferred conformation of aminophosphanes with bulky amino groups ( 1–20 ) was determined by NMR spectroscopy in solution, in two cases in the solid state ( 11,17 ) and in one case ( 11 ) by X‐ray crystallography. Trimethylsilylaminodiphenylphosphanes Ph2PN(R)SiMe3 (R = Bu ( 1 ), Ph ( 2 ), 2‐pyridyl ( 3 ), 2‐pyrimidyl ( 4 ), Me3Si ( 5 )), amino(chloro)phenylphosphanes Ph(Cl)PNRR′ (R = Bz, R′ = Me ( 6 ), R = Bz, R′ = tBu ( 7 ), R = Et, R′ = Ph ( 8 )), amino(chloro)tert‐butylphosphanes tBu(Cl)PNRR′ (R = R′ = iPr ( 9 ), R = Me, R′ = tBu ( 10 ), R = Bz, R′ = tBu ( 11 ), R = H, R′ = tBu ( 12 ), R = Et, R′ = Ph ( 13 ), R = iPr, R′ = Ph ( 14 ), R = Bu, R′ = Ph ( 15 ), R = Bz, R′ = Ph ( 16 ), R = R′ = Ph ( 17 ), R = R′ = Me3Si ( 18 )), 3‐tert‐butyl‐2‐chloro‐1,3,2‐oxazaphospholane ( 19 ), and benzyl(tert‐butyl)aminodichlorophosphane ( 20 ) were studied by 1H, 13C, 15N, 29Si, and 31P NMR spectroscopy. In all cases, the more bulky substituent at the nitrogen atom prefers the syn‐position with respect to the assumed orientation of the phosphorus lone pair of electrons. Many of the derivatives studied adopt this preferred conformation even at room temperature. Numerous signs of coupling constants 1J(31P, 15N), 2J(31P, 13C), and 2J(31P, 29Si) were determined. Low temperature NMR spectra were measured for derivatives for which rotation about the P N bond at room temperature is fast, showing the presence of two rotamers at low temperature. The respective conformation of these rotamers could be assigned by 13C, 15N, and 31P NMR spectroscopy. Isotope‐induced chemical shifts 1Δ15/14N(31P) were determined for all compounds at natural abundance of 15N by using Hahn‐echo extended polarization transfer experiments. The molecular structure of 11 in the solid state reveals pyramidal surroundings of the nitrogen atom and mutual trans‐positions of the tert‐butyl groups at phosphorus and nitrogen. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:667–676, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10084  相似文献   

12.
o‐C6H4(SiR3?nHn)(BMes2) ( 1 ; R=Me, Ph; n=1, 2) undergo Mes? H (Mes=mesityl) ligand exchange between the silicon atom and the boron atom to form o‐C6H4(SiMesR3?nHn?1)(BMesH) ( 6 ) upon heating. The resulting hydroborane intermediates ( 6 ) immediately react with benzaldehyde to afford their corresponding benzyloxyboranes ( 5 ). A DFT study of model compounds reveals the transition states of the ligand exchange. A hydride abstraction from the silicon atom by the boron center is key to reaching the transition states, which include the tricoordinate silyl‐cation moiety and the tetracoordinate hydridoborate moiety.  相似文献   

13.
The neutral hexacoordinate silicon(IV) complex 6 (SiO2N4 skeleton) and the neutral pentacoordinate silicon(IV) complexes 7 – 11 (SiO2N2C skeletons) were synthesized from Si(NCO)4 and RSi(NCO)3 (R=Me, Ph), respectively. The compounds were structurally characterized by solid‐state NMR spectroscopy ( 6 – 11 ), solution NMR spectroscopy ( 6 and 10 ), and single‐crystal X‐ray diffraction ( 8 and 11 were studied as the solvates 8? CH3CN and 11? C5H12 ? 0.5 CH3CN, respectively). The silicon(IV) complexes 6 (octahedral Si‐coordination polyhedron) and 7 – 11 (trigonal‐bipyramidal Si‐coordination polyhedra) each contain two bidentate ligands derived from an α‐amino acid: (S)‐alanine, (S)‐phenylalanine, or (S)‐tert‐leucine. The deprotonated amino acids act as monoanionic ( 6 ) or as mono‐ and dianionic ligands ( 7 – 11 ). The experimental investigations were complemented by computational studies of the stereoisomers of 6 and 7 .  相似文献   

14.
The reactions of bis(borohydride) complexes [(RN?)Mo(BH4)2(PMe3)2] ( 4 : R=2,6‐Me2C6H3; 5 : R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN?)Mo(H)(SiR′3)(PMe3)3] ( 3 : R=Ar, R′3=H2Ph; 8 : R=Ar′, R′3=H2Ph; 9 : R=Ar, R′3=(OEt)3; 10 : R=Ar, R′3=HMePh). These compounds can also be conveniently prepared by reacting [(RN?)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non‐Bailar‐twist pathway. The silyl/silane exchange proceeds through an unusual MoVI intermediate, [(ArN?)Mo(H)2(SiH2Ph)2(PMe3)2] ( 19 ). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans‐(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] ( 18 ). This latter species does not undergo the elimination of a Si? O group (which corresponds to the conventional Ojima′s mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible β‐CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN?)Mo(η2‐PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η1‐silane complex, as studied by DFT calculations.  相似文献   

15.
N‐(trialkoxysilylalkyl) derivatives of 1,2,3,4‐tetrahydroquinoline, 1,2,3,4‐tetrahydroisoquinoline and 4,4‐dimethyl‐4‐sila‐1,2,3,4‐tetrahydroisoquinoline were prepared and characterized by elemental analysis, 1H, 13C and 29Si NMR spectroscopy. In vivo psychotropic properties and in vitro cytotoxic effects of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propyltriethoxysilane methiodide and 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane are reported. Comparative study of 29Si shifts in newly synthesized compounds suggested donor–acceptor interaction between nitrogen and silicon atom, which increased electron density at Si nuclei, revealing a stronger increment of N → Si transannular bond in comparison with N → Si α‐effect. The molecular structure of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane features a penta‐coordinate silicon atom having CSiO3 pattern and Si…N intramolecular interaction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Hydride abstraction from the gold (disilyl)ethylacetylide complex [( P )Au{η1‐C?CSi(Me)2CH2CH2SiMe2H}] ( P =P(tBu)2o‐biphenyl) with triphenylcarbenium tetrakis(pentafluorophenyl)borate at ?20 °C formed the cationic gold (β,β‐disilyl)vinylidene complex [( P )Au?C?CSi(Me)2CH2CH2Si (Me)2]+B(C6F5)4? with ≥90 % selectivity. 29Si NMR analysis of this complex pointed to delocalization of positive charge onto both the β‐silyl groups and the ( P )Au fragment. The C1 and C2 carbon atoms of the vinylidene complex underwent facile interconversion (ΔG=9.7 kcal mol?1), presumably via the gold π‐disilacyclohexyne intermediate [( P )Au{η2‐C?CSi(Me)2CH2CH2Si (Me)2}]+B(C6F5)4?.  相似文献   

17.
The six‐, eight‐ and twelve‐membered cyclo‐siloxanes, cyclo‐[R2SiOSi(Ot‐Bu)2O]2 (R = Me ( 1 ), Ph ( 2 )), cyclo‐(t‐BuO)2Si(OSiR2)2O (R = Me ( 3 ), Ph ( 4 )), cyclo‐R2Si[OSi(Ot‐Bu)2]2O (R = Me ( 5 ), Ph ( 6 )) and cyclo‐[(t‐BuO)2Si(OSiMe2)2O]2 ( 3a ) were synthesized in high yields by the reaction of (t‐BuO)2Si(OH)2 and [(t‐BuO)2SiOH]2O with R2SiCl2 and (R2SiCl)2O (R = Me, Ph). Compounds 1 — 6 were characterized by solution and solid‐state 29Si NMR spectroscopy, electrospray mass spectrometry and osmometric molecular weight determination. The molecular structure of 4 has been determined by single crystal X‐ray diffraction and features a six‐membered cyclo‐siloxane ring that is essentially planar. The reduction of 1 — 6 with i‐Bu2AlH (DIBAL‐H) led to the formation of the metastable aluminosiloxane (t‐BuO)2Si(OAli‐Bu2)2 ( 7 ) along with Me2SiH2 and Ph2SiH2.  相似文献   

18.
Treatment of dichloromethyl‐tris(trimethylsilyl)silane (Me3Si)3Si–CHCl2 ( 1 ), prepared by the reaction of tris(trimethylsilyl)silane with chloroform in presence of potassium tertbutoxide, with organolithium reagents (molar ratio 1 : 3) affords the bis(trimethylsilyl)methyl‐disilanes Me3SiSiR2–CH(SiMe3)2 ( 12 a–d ) ( a : R = Me, b : R = n‐Bu, c : R = Ph, d : R = Mes). The formation of 12 a–d is discussed as proceeding through an exceptional series of isomerization and addition reactions involving intermediate silyl substituted carbenoids and transient silenes. The carbenoid (Me3Si)2PhSi–C(SiMe3)LiCl ( 8 c ) is moderately stable at low temperature and was trapped with water to give (Me3Si)2PhSi–CH(SiMe3)Cl ( 9 c ) and with chlorotrimethylsilane affording (Me3Si)2PhSi–CCl(SiMe3)2 ( 7 c ). For 12 d an X‐ray crystal structure analysis was performed, which characterizes the compound as a highly congested silane with bond parameters significantly deviating from standard values.  相似文献   

19.
An alternative synthesis of C‐monoacetylenic phosphaalkenes trans‐Mes*P=C(Me)(C≡CR) (Mes* = 2, 4, 6‐tBu3Ph, R = Ph, SiMe3) from C‐bromophosphaalkenes cis‐Mes*P=C(Me)Br using standard Sonogashira coupling conditions is described. Crystallographic studies confirm cistrans isomerization of the P=C double bond during Pd‐catalyzed cross coupling, leading exclusively to trans‐acetylenic phosphaalkenes. Crystallographic studies of all synthesized compounds reveal the extend of π‐conjugation over the acetylene and P=C π‐systems.  相似文献   

20.
Directed tridentate Lewis acids based on the 1,3,5‐trisilacyclohexane skeleton with three ethynyl groups [CH2Si(Me)(C2H)]3 were synthesised and functionalised by hydroboration with HB(C6F5)2, yielding the ethenylborane {CH2Si(Me)[C2H2B(C6F5)2]}3, and by metalation with gallium and indium organyls affording {CH2Si(Me)[C2M(R)2]}3 (M=Ga, In, R=Me, Et). In the synthesis of the backbone the influence of substituents (MeO, EtO and iPrO groups at Si) on the orientation of the methyl group was studied with the aim to increase the abundance of the all‐cis isomer. New compounds were identified by elemental analyses, multi‐nuclear NMR spectroscopy and in some cases by IR spectroscopy. Crystal structures were obtained for cis‐trans‐[CH2Si(Me)(Cl)]3, all‐cis‐[CH2Si(Me)(H)]3, all‐cis‐[CH2Si(Me)(C2H)]3, cistrans‐[CH2Si(Me)(C2H)]3 and all‐cis‐[CH2Si(Me)(C2SiMe3)]3. A gas‐phase electron diffraction experiment for all‐cis‐[CH2Si(Me)(C2H)]3 provides information on the relative stabilities of the all‐equatorial and all‐axial form; the first is preferred in both solid and gas phase. The gallium‐based Lewis acid {CH2Si(Me)[C2Ga(Et)2]}3 was reacted with a tridentate Lewis base (1,3,5‐trimethyl‐1,3,5‐triazacyclohexane) in an NMR titration experiment. The generated host–guest complexes involved in the equilibria during this reaction were identified by DOSY NMR spectroscopy by comparing measured diffusion coefficients with those of the suitable reference compounds of same size and shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号