首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecules of eletriptan hydrobromide monohydrate (systematic name: (1S,2R)‐1‐methyl‐2‐{5‐[2‐(phenylsulfonyl)ethyl]‐1H‐indol‐3‐ylmethyl}pyrrolidinium bromide monohydrate), C22H27N2O2S+·Br·H2O, (I), and naratriptan hydrochloride (systematic name: 1‐methyl‐4‐{5‐[2‐(methylsulfamoyl)ethyl]‐1H‐indol‐3‐yl}piperidinium chloride), C17H26N3O2S+·Cl, (II), adopt conformations similar to other triptans. The C‐2 and C‐5 substituents of the indole ring, both of which are in a region of conformational flexibility, are found to be oriented on either side of the indole ring plane in (I), whilst they are on the same side in (II). The N atom in the C‐2 side chain is protonated in both structures and is involved in the hydrogen‐bonding networks. In (I), the water molecules create helical hydrogen‐bonded chains along the c axis. In (II), the hydrogen bonding of the chloride ions results in macrocyclic R42(20) and R42(24) ring motifs that form sheets in the bc plane. This structural analysis provides an insight into the molecular structure–activity relationships within this class of compound, which is of use for drug development.  相似文献   

2.
We report an experimental study on the effect of solvents on the model SNAr reaction between 1‐chloro‐2,4‐dinitrobenzene and morpholine in a series of pure ionic liquids (IL). A significant catalytic effect is observed with reference to the same reaction run in water, acetonitrile, and other conventional solvents. The series of IL considered include the anions, NTf2?, DCN?, SCN?, CF3SO3?, PF6?, and FAP? with the series of cations 1‐butyl‐3‐methyl‐imidazolium ([BMIM]+), 1‐ethyl‐3‐methyl‐imidazolium ([EMIM]+), 1‐butyl‐2,3‐dimethyl‐imidazolium ([BM2IM]+), and 1‐butyl‐1‐methyl‐pyrrolidinium ([BMPyr]+). The observed solvent effects can be attributed to an “anion effect”. The anion effect appears related to the anion size (polarizability) and their hydrogen‐bonding (HB) abilities to the substrate. These results have been confirmed by performing a comparison of the rate constants with Gutmann's donicity numbers (DNs). The good correlation between rate constants and DN emphasizes the major role of charge transfer from the anion to the substrate.  相似文献   

3.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

4.
Hydrolysis of TiCl4 in a diether‐functionalized imidazolium ionic liquid (IL), namely 1‐methyl‐3‐[2‐(2‐methoxy(ethoxy)ethyl]imidazolium methane sulfonate (M(MEE)I ? CH3SO3), results in a heterostructured organic/inorganic and sponge‐like porous TiO2 material. The thermal treatment (300 °C) followed by calcination (500 °C) affords highly porous TiO2. The characterization of the obtained samples (with and without IL, before and after calcination) by XRD, SEM, and TEM reveals TiO2 anatase crystalline phases and irregular‐shaped particles with different porous structures. These hierarchical‐structured mesoporous TiO2 nanomaterials were employed as efficient photocatalysts in the water‐splitting process, yielding up to 1304 μmol g?1 on hydrogen production.  相似文献   

5.
1,3‐Bis(ethylamino)‐2‐nitrobenzene, C10H15N3O2, (I), and 1,3‐bis(n‐octylamino)‐2‐nitrobenzene, C22H39N3O2, (II), are the first structurally characterized 1,3‐bis(n‐alkylamino)‐2‐nitrobenzenes. Both molecules are bisected though the nitro N atom and the 2‐C and 5‐C atoms of the ring by twofold rotation axes. Both display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, but no intermolecular hydrogen bonding. The nearly planar molecules pack into flat layers ca 3.4 Å apart that interact by hydrophobic interactions involving the n‐alkyl groups rather than by π–π interactions between the rings. The intra‐ and intermolecular interactions in these molecules are of interest in understanding the physical properties of polymers made from them. Upon heating in the presence of anhydrous potassium carbonate in dimethylacetamide, (I) and (II) cyclize with formal loss of hydrogen peroxide to form substituted benzimidazoles. Thus, 4‐ethylamino‐2‐methyl‐1H‐benzimidazole, C10H13N3, (III), was obtained from (I) under these reaction conditions. Compound (III) contains two independent molecules with no imposed internal symmetry. The molecules are linked into chains via N—H...N hydrogen bonds involving the imidazole rings, while the ethylamino groups do not participate in any hydrogen bonding. This is the first reported structure of a benzimidazole derivative with 4‐amino and 2‐alkyl substituents.  相似文献   

6.
A new octameric water cluster was observed in the complex Co2(dptc)(bipy)2(H2O)6 · 4H2O ( 1 ) (H4dptc = diphenyl‐3,3′,4,4′‐tetracarboxylic acid; bipy = 2,2′‐bipyridine), which was characterized by single‐crystal X‐ray diffraction, elemental analysis and IR spectroscopy. The centrosymmetric octamer consists of a water hexamer in the chair form and two water molecules and brings to light a novel mode of the cooperative association of water molecules. Those complex units are connected into a 2D infinite layer framework through hydrogen bonding. Consequently, the 2D layers are further aggregated by hydrogen bonding with octameric subunits and π ··· π stacking interactions to form a 3D supramolecular architecture.  相似文献   

7.
The organic ligands 4‐methyl‐1H‐imidazole and 2‐ethyl‐4‐methyl‐1H‐imidazole react with Cu(CF3SO3)2·6H2O to give tetrakis(5‐methyl‐1H‐imidazole‐κN3)­cop­per(II) bis­(tri­fluoro­methane­sulfonate), [Cu(C4H6N2)4](CF3SO3)2, and aqua­tetrakis(2‐ethyl‐5‐methyl‐1H‐imidazole‐κN3)copper(II) bis(tri­ fluoro­methane­sulfonate), [Cu(C6H10N2)4(H2O)](CF3SO3)2. In the former, the Cu atom has an elongated octahedral coordination environment, with four imidazole rings in equatorial positions and two tri­fluoro­methane­sulfonate ions in axial positions. This conformation is similar to those in the analogous complexes tetrakis­(imidazole)­cop­per(II) tri­fluoro­methane­sulfonate and tetrakis(2‐methyl‐1H‐imidazole)­cop­per(II) tri­fluoro­methane­sulfonate. In the second of the title compounds, the ethyl groups block the central Cu atom, and a square‐pyramidal coordination environment is formed around the Cu atom, with the substituted imidazole rings in the basal positions and a water mol­ecule in the axial position.  相似文献   

8.
5‐Ammonionaphthalene‐1‐sulfonate monohydrate, C10H9NO3S·H2O, contains layers of zwitterionic molecules with the acidic sulfonic acid H atom transferred to the amine N atom. Within each layer, the charged groups (NH3+ and SO3) are directed to the surface of the layer and are inverted on adjacent molecules. The naphthalene rings in a given layer are all parallel. The layers are held together by N—H...O and O—H...O hydrogen bonds involving the ammonium, sulfonate and water atoms. The Mn and Ni salts crystallize as fully aquated trihydrates, namely hexaaquamanagnese(II) bis(5‐aminonaphthalene‐1‐sulfonate) trihydrate, [Mn(H2O)6](C10H8NO3S)2·3H2O, (II), and hexaaquanickel(II) bis(5‐aminonaphthalene‐1‐sulfonate) trihydrate, [Ni(H2O)6](C10H8NO3S)2·3H2O, (III), in which layers of hexaaquametal(II) complexes alternate with layers of 5‐aminonaphthalene‐1‐sulfonate anions. The cations reside on twofold rotation axes and display regular octahedral coordination. The additional water molecules are found in the inorganic layer between the complex cations, one on a twofold axis and one in a general position. The anions are packed in a herring‐bone arrangement with the rings of neighboring rows of anions approximately 43° out of parallel. The NH2 and SO3 groups line the surface of the layer, where they participate in numerous hydrogen bonds with the water molecules. Whereas the Mn and Ni salts are orthorhombic, the Co salt, hexaaquacobalt(II) bis(5‐aminonaphthalene‐1‐sulfonate) dihydrate, [Co(H2O)6](C10H8NO3S)2·2H2O, (IV), crystallizes in a triclinic cell of similar dimensions, with the cations situated on centers of inversion. The overall packing is very similar to that of the Mn and Ni salts, with the main differences being the absence of the solvent water molecule on the special position and subtle modifications in the positioning of the anions within their layers. This series of salts is compared with those of the same metals with the 5‐aminonaphthalene‐2‐sulfonate and 4‐aminonaphthalene‐1‐sulfonate isomers, allowing for similarities and differences in packing to be discussed on the basis of the differing substitution of the naphthalene ring and, in some cases, differing degrees of hydration.  相似文献   

9.
A Schiff base ligand 1‐salicylideneamino‐1,3,4‐triazole (L) was prepared. Two new complexes with Schiff base, [Zn(L)2(SCN)2] ( 1 ) and [Co2(L)5(SCN)4]·H2O ( 2 ) have been synthesized and structurally characterized. Complex 1 takes a mononuclear zinc structure and the coordination geometry of zinc atom exhibits a distorted tetrahedron, in which a zig‐zag chain is constructed through hydrogen bonding interactions. A 2D supramolecular network is formed through Π‐Π stacking between triazole planes and phenyl planes of adjacent chains, and a 3D supramolecular network is further constructed by these non‐covalent Π‐Π stacking interactions between the triazole planes of neighboring layers. Complex 2 takes a dinuclear structure with the bidentate‐bridging Schiff base ligands, and cobalt site exhibits a distorted octahedron. The lattice water molecules and neutral complex 2 units form a dimer with hydrogen bonding interactions. In addition, IR and thermal gravimetric analysis are presented.  相似文献   

10.
IR spectroscopy methods (experiment, theoretical simulation) have been applied to study the structural features and intermolecular interactions in a two-component heterogeneous nano-size system benzophenone-titanium dioxide (BPh-TiO2). IR spectra of the sample were recorded at room temperature within the range 400–4000 cm?1. The spectra display hydrogen bonding determining the intermolecular interactions between titanium dioxide, BPh molecules, and water in the near-surface layers of nanocrystalline TiO2 particles. IR spectra of free BPh molecules, water, model H-complexes of BPh with water, and the fragment of hydrated titania surface (BPh…HOH and BPh…Ti≡) have been simulated. Experimental and theoretical spectra were analyzed in the region of stretching vibrations of carbonyl, hydroxyl, and other groups sensitive to a variation of intermolecular interactions. It is found that hydrogen bonding in the near-surface layers of nanocrystalline TiO2 particles in the two-component heterogeneous nanosystem BPh-TiO2 gives rise to the formation of complexes BPh-O-Ti(OH)-O-, BPh…HOH, along with complexes of-O-Ti(OH)-O-with water and pure water complexes.  相似文献   

11.
In the title complex, (C6H11N2)3[LaCl6], centrosymmetric octahedral hexa­chloro­lanthanate anions are located at the corners and face‐centers of the monoclinic unit cell. The ring H atoms of the cations interact with the Cl atoms of the anions via hydrogen bonding, and bifurcation of the hydrogen bonding is observed. Cation–cation interactions via hydrogen bonding between the ring H atoms and π‐electrons of aromatic rings are also observed as in other imidazolium salts.  相似文献   

12.
In the title compound, [U(C9H4INO4S)O2(H2O)3]·2H2O, the asymmetric unit contains a UO22+ ion coordinated by the N and O atoms of a 7‐iodo‐8‐oxidoquinoline‐5‐sulfonate dianion (ferron anion) and three coordinated water molecules, and two uncoordinated water molecules. The UO22+ ion exhibits a seven‐coordinate pentagonal bipyramidal geometry. The usual sulfonate oxygen coordination is absent but the sulfonate O atoms, along with the coordinated and lattice water molecules, play a vital role in assembling the three‐dimensional structure via an extensive network of intermolecular O—H...O hydrogen bonds and π–π stacking interactions.  相似文献   

13.
In the title compound, 2C19H13N5·C8H6O4·4H2O, the terephthalic acid molecule lies on a crystallographic inversion centre and the H atoms of one water molecule exhibit disorder. The maximum deviation of any atom from the mean plane through the C and N atoms of the 2,6‐bis(benzimidazol‐2‐yl)pyridine molecule is only 0.161 (4) Å. In the crystal structure, the water molecules play an important role in linking the other molecules via hydrogen bonding. The structure forms a three‐dimensional framework via strong intermolecular hydrogen bonding. In addition, there are π–π stacking interactions between the imidazole, pyridine and benzene rings.  相似文献   

14.
A series of click ionic salts 4 a – 4 n was prepared through click reaction of organic azides with alkyne‐functionalized imidazolium or 2‐methylimidazolium salts, followed by metathesis with lithium bis(trifluoromethanesulfonyl)amide or potassium hexafluorophosphate. All salts were characterized by IR, NMR, TGA, and DSC, and most of them can be classified as ionic liquids. Their steric and electronic properties can be easily tuned and modified through variation of the aromatic or aliphatic substituents at the imidazolium and/or triazolyl rings. The effect of anions and substituents at the two rings on the physicochemical properties was investigated. The charge and orbital distributions based on the optimized structures of cations in the salts were calculated. Reaction of 4 a with PdCl2 produced mononuclear click complex 4 a‐Pd , the structure of which was confirmed by single‐crystal X‐ray diffraction analysis. Suzuki–Miyaura cross‐coupling shows good catalytic stability and high recyclability in the presence of PdCl2 in 4 a . TEM and XPS analyses show formation of palladium nanoparticles after the reaction. The palladium NPs in 4 a are immobilized by the synergetic effect of coordination and electrostatic interactions with 1,2,3‐triazolyl and imidazolium, respectively.  相似文献   

15.
The diorganotin(IV) complexes, R2Sn(dtbu) (R = Me 1 , n‐Bu 2 , Ph 3 , PhCH2 4 ; H2dtbu = 2,5‐dithiobiurea), have been synthesized and characterized by IR, 1H, and 119Sn NMR spectroscopy. The structures of 1 and 3 have been determined by X‐ray crystallography. Crystal structures show that both complexes 1 and 3 consist of molecules in which the bideprotonated ligand is N,S,S‐bonded, and the tin atom exhibits distorted pentacoordination with small differences between the methyl and phenyl derivatives in bond distances and bond angles. The unusual coordination mode of the dtbu2− anion creates four‐ and five‐membered chelate rings. Moreover, the packing of complexes 1 and 3 are stabilized by the hydrogen bonding. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:93–98, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20173  相似文献   

16.
A novel mixed‐ligand complex, [Cd(im)6][Cd(im)3(H2O)3]2(ans)6 · 8H2O ( 1 ), was obtained from the reaction ofCd(OAc)2 · 2H2O, imidazole (im) and sodium 4‐aminonaphthalene‐1‐sulfonate tetrahydrate (Na‐ans) in a mixed solvent at 25 °C. The complex was characterized by elemental analysis, IR spectroscopy, and X‐ray single crystal diffraction. There are two kinds of cations constructed by CdII atoms with a octahedral coordination arrangement in 1 . The CdII atom is bonded by six nitrogen atoms from six im ligands in the first cation, and the second central CdII atom is bonded by three nitrogen atoms of im molecules and three oxygen atoms belonging to water molecules. The ans anion acts as a counterion to balance the charge, and the adjacent anions are reversed but non‐parallel interlinked by N–H ··· O(S) hydrogen bonds into graphite‐like 2D sheet viewed from the c axis. The anionic channels along the [110] direction are filled with the cations, and the two kinds of cations are alternatingly arranged in the channels. The hydrogen‐bonding interactions together with the ionic bonds stabilize the crystal structure. The thermostability of the complex was investigated by TG and DSC.  相似文献   

17.
Low‐molecular‐weight compounds based on L ‐lysine with alkylpyridinium or ‐imidazolium groups have been synthesized and studied for their gelation behavior in H2O. Most compounds formed gels below a concentration of 2.5 weight‐%, the pyridinium bromide 2a and the 1‐methyl‐1H‐imidazolium bromide 3 even at 0.1 weight‐%. The minimum gel concentration (MGC) necessary for hydrogelation increased with increasing length of the Lys Nα‐alkanoyl chain, but the gelation ability concomitantly decreased. Electron‐microscopic images demonstrated that these hydrogelators create a three‐dimensional network in H2O by entanglement of self‐assembled nanofibers. A fluorescence study with 8‐anilinonaphthalene‐1‐sulfonic acid (ANS) proved that some hydrophobic aggregates are formed at hydrogelator concentrations below an MGC of less than 50 μM (0.004%). FT‐IR, 1H‐NMR, and Fluorescence studies indicated that the driving forces for the self‐assembly into nanofibers are mainly hydrophobic interactions and H‐bonding between amide groups.  相似文献   

18.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   

19.
The asymmetric unit of the racemic form of the title compound, C12H15NOS, contains four crystallographically independent molecules. The olefinic bond connecting the 2‐thienyl and 1‐azabicyclo[2.2.2]octan‐3‐ol moieties has Z geometry. Strong hydrogen bonding occurs in a directed co‐operative O—H...O—H...O—H...O—H R44(8) pattern that influences the conformation of the molecules. Co‐operative C—H...π interactions between thienyl rings are also present. The average dihedral angle between adjacent thienyl rings is 87.09 (4)°.  相似文献   

20.
Room temperature ionic liquids (RTILs), especially pyrrolidinium based RTILs with bis(trifluoromethane‐sulfonyl)imide (TFSI) as counterion, are frequently proposed as promising electrolyte component candidates thanks to their high thermal as well as high oxidation stability. In order to avoid a resource intensive experimental approach, mainly based on trial and error experiments, a computational screening method for pre‐selecting suitable candidate molecules was adopted and three homologous series compounds were synthesized by modifying the cation structure of pyrrolidinium RTILs. The obtained high purity RTILs: methyl‐methylcarboxymethyl pyrrolidinium TFSI (MMMPyrTFSI), methyl‐ethylcarboxymethyl pyrrolidinium TFSI (MEMPyrTFSI) and methylpropylcarboxymethyl pyrrolidinium TFSI (MPMPyrTFSI) revealed excellent thermal stabilities higher than 300 °C. Furthermore, MMMPyrTFSI and MPMPyrTFSI exhibit high oxidation stability up to 5.4 V vs. Li/Li+. No aluminum corrosion of current collector was observed at 5 V vs. Li/Li+. In addition to that, these RTILs display a superior salt (LiTFSI) solubility (3.0–3.5 M), compared to the unmodified RTIL 1‐butyl‐1‐methylpyrrolidinium TFSI (Pyr14TFSI) (1.5–2.0 M) at room temperature. All these properties make novel ester modified RTILs promising and interesting candidates for application in rechargeable lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号