首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fullerence C60‐cryptand 22 was prepared and successfully applied as the electric carrier in the PVC electrode membrane of a bifunctional ion‐selective electrode for cations, e.g., Ag+ ions as well as anions, e.g., I? ions. The bifunctional ion‐selective electrode based on C60‐cryptand 22 can be applied as a Silver (Ag+) ion selective electrode with an internal electrode solution of 10?3 M AgNO3 in water (pH = 6.3), or as an Iodide (I?) ion selective electrode with an acidic internal electrode solution of 10?4 M KI(aq) (pH = 2) in which the cryptand 22 is protonated, and the C60‐cryptand 22 is changed to C60‐Cryptand22–H+ and becomes an anionic electro‐carrier to absorb the I? ion. The Ag+ ion selective electrode based on C60‐cryptand 22 gave a linear response with a near‐Nernstian slope (59.5 mV decade?1) within the concentration range 10?1‐10?3 M Ag+(aq). The Ag+ ion electrode exhibited comparatively good selectivity for silver ions, over other transition‐metal ions, alkali and alkaline earth metal ions. The Ag+ ion selective electrode with good stability and reproducibility was successfully used for the titration of Ag+(aq) with Cl? ions. The Iodide (I?) Ion selective electrode based on protonated C60–cryptand22‐H+ also showed a linear response with a nearly Nernstian slope (58.5 mV decade?1) within 10?1 ‐ 10?3 M I? (aq) and exhibited good selectivity for I? ions and had small selectivity coefficients (10?2–10?3) for most of other anions, e.g., F? , OH?, CH3COO?, SO42?, CO32?, CrO42?, Cr2O72? and PO43? ions.  相似文献   

2.
Following removal of coordinated CH3CN, the resulting complexes [AgI(2,2′‐bipyridine)][BF4] ( 1 ) and [AgI(6,6′‐dimethyl‐2,2′‐bipyridine)][OTf] ( 2 ) show ethene/ethane sorption selectivities of 390 and 340, respectively, and corresponding ethene sorption capacities of 2.38 and 2.18 mmol g?1 when tested at an applied gas pressure of 90 kPa and a temperature of (20±1) °C. These ethene/ethane selectivities are 13 times higher than those reported for known solid sorbents for ethene/ethane separation. For 2 , ethene sorption reached 90 % of equilibrium capacity within 15 minutes, and this equilibrium capacity was maintained over the three sorption/desorption cycles tested. The rates of ethene sorption were also measured. To our knowledge, these are the first complexes, designed for olefin/paraffin separations, which have open silver(I) sites. The high selectivities arise from these open silver(I) sites and the relatively low molecular surface areas of the complexes.  相似文献   

3.
The hardness of oxo ions (O2?) means that coinage‐metal (Cu, Ag, Au) clusters supported by oxo ions (O2?) are rare. Herein, a novel μ4‐oxo supported all‐alkynyl‐protected silver(I)–copper(I) nanocluster [Ag74?xCuxO12(PhC≡C)50] ( NC‐1 , avg. x=37.9) is characterized. NC‐1 is the highest nuclearity silver–copper heterometallic cluster and contains an unprecedented twelve interstitial μ4‐oxo ions. The oxo ions originate from the reduction of nitrate ions by NaBH4. The oxo ions induce the hierarchical aggregation of CuI and AgI ions in the cluster, forming the unique regioselective distribution of two different metal ions. The anisotropic ligand coverage on the surface is caused by the jigsaw‐puzzle‐like cluster packing incorporating rare intermolecular C?H???metal agostic interactions and solvent molecules. This work not only reveals a new category of high‐nuclearity coinage‐metal clusters but shows the special clustering effect of oxo ions in the assembly of coinage‐metal clusters.  相似文献   

4.
Silver polymer electrolytes were prepared by blending silver salt with poly(oxyethylene)9 methacrylate)‐graft‐poly(dimethyl siloxane), POEM‐g‐PDMS, confining silver salts within the continuous ion‐conducting POEM domains of microphase‐separated graft copolymer. AgClO4 polymer electrolytes exhibited their maximum conductivity at high silver concentrations as well as higher ionic conductivities than AgCF3SO3 electrolytes. The difference in conductivities of the two electrolytes was investigated in terms of the differences in the interactions of silver ions with ether oxygen of POEM and, hence, with the anions of salts. Upon the addition of salt in graft copolymer, the increase of Tg in AgClO4 was higher than that in AgCF3SO3 electrolytes. Analysis of an extended configuration entropy model revealed that the interaction of ether oxygen/AgClO4 was stronger than that of ether oxygen/AgCF3SO3 whereas the interaction of Ag+/ClO4? was weaker than that of Ag+/CF3SO3?. These interactions are supported by the anion vibration mode of FT‐Raman spectroscopy. It is thus concluded that the higher ionic conductivity of AgClO4 electrolytes was mostly because of higher concentrations of free ions, resulting from their strong ether oxygen/silver ion and weak silver ion/anion interactions. A small angle X‐ray scattering study also showed that the connectivity of the POEM phase was well developed to form nanophase morphology and the domain periodicities of graft copolymer electrolytes monotonically increased with the increase of silver concentration up to critical concentrations, after which the connectivity was less developed and the domain spacings remained invariant. This is attributed to the fact that silver salts are spatially and selectively incorporated in conducting POEM domains as free ions up to critical concentrations, after which they are distributed in both domains as ion pairs without selectivity. The increase of domain d‐spacing in AgClO4 electrolytes was larger than that in AgCF3SO3, which again results from high concentrations of free ions in the former. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1018–1025, 2007  相似文献   

5.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

6.
It is generally believed that silver or silver‐based compounds are not suitable counter electrode (CE) materials for dye‐sensitized solar cells (DSSCs) due to the corrosion of the I?/I3? redox couple in electrolytes. However, Ag2S has potential applications in DSSCs for catalyzing I3? reduction reactions because of its high carrier concentration and tiny solubility product constant. In the present work, CE manufactured from Ag2S nanocrystals ink exhibited efficient electrocatalytic activity in the reduction of I3? to I? in DSSCs. The DSSC consisting of Ag2S CE displayed a higher power conversion efficiency of 8.40 % than that of Pt CE (8.11 %). Moreover, the devices also showed the characteristics of fast activity onset, high multiple start/stop capability and good irradiated stability. The simple composition, easy preparation, stable chemical property, and good catalytic performance make the developed Ag2S CE as a promising alternative to Pt CE in DSSCs.  相似文献   

7.
The oligonucleotide d(TX)9, which consists of an octadecamer sequence with alternating non‐canonical 7‐deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double‐stranded DNA through the formation of hydrogen‐bonded Watson–Crick base pairs. dsDNA with metal‐mediated base pairs was then obtained by selectively replacing W‐C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag+ ions, and its stability is significantly enhanced in the presence of Ag+ ions while its double‐helix structure is retained. Temperature‐dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)‐mediated base pairs. This strategy could become useful for preparing stable metallo‐DNA‐based nanostructures.  相似文献   

8.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

9.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T? HgII? T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C? AgI? C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C? AgI? C base pair through N3? AgI? N3 linear coordination. The C? AgI? C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C? AgI? C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

10.
The reaction of {(HNEt3)2[Ag10(tBuC6H4S)12]}n, Ag2O, Na2MoO4, and m‐methoxybenzoic acid (Hmbc) in CH3OH/CH2Cl2 led to yellow crystals of [Ag4S4 (MoO4)5@Ag66] (SD/Ag70b; SD=SunDi) only, while in the presence of DMF, additional dark‐red crystals of [Ag10@ (MoO4)7@Ag60] (SD/Ag70a) were obtained. SD/Ag70b consists of five MoO42? ions wrapped by a shell of 66 Ag atoms, while SD/Ag70a contains a rare Ag10 kernel consisting of five tetrahedra sharing faces and edges, surrounded by seven MoO42? ions enclosed in a shell of 60 Ag atoms. The formation of the Ag10 kernel originates from a reduction reaction during the self‐assembly process that involves DMF. This work provides the structural information of a unique Ag10 kernel (five fused Ag4 tetrahedra) and paves an avenue to trap elusive silver species with hierarchical multi‐shell silver nanocluster assemblies with the help of anion templates.  相似文献   

11.
A series of 13 silver(I) double and multiple salts containing 1,3‐butadiynediide, C42?, were synthesized by dissolving the silver carbide Ag2C4 in a concentrated aqueous solution of one or more of the silver salts AgNO3, AgCF3CO2, AgC2F5CO2, AgF, AgBF4, and AgPF6. The 1,3‐butadiynediide anion invariably adopts a μ44 coordination mode in these compounds, which indicates that the Ag4?C?C? C?C?Ag4 moiety can be used as a new type of metalloligand supramolecular synthon for the construction of coordination networks. Fine‐tuning with various ancillary anionic ligands caused the Ag4 aggregate at each ethynide terminus to adopt a butterfly‐shaped, planar, or barblike configuration, within which the silver–ethynide interactions can be classified into three types: σ, π, and mixed (σ,π). The effect of coexisting nitrile ligands and quaternary ammonium salts on supramolecular assembly with the above synthon was also explored. The hydrolysis of PF6? and BF4? led to the formation of the quadruple salt Ag2C4?4 AgNO3?AgPF2O2?Ag3PO4 and a novel (F)2(H2O)18 hydrogen‐bonded tape in the triple salt Ag2C4?2 AgF? 10 AgC2F5CO2?CH3CN?12 H2O, respectively. The largest silver–ethynide cluster aggregate described to date, (C4)3@Ag18, occurs in 3 Ag2C4? 12 AgC2F5CO2?5[(BnMe3N)C2F5CO2]? 4 H2O (Bn=benzyl).  相似文献   

12.
The title compound, [Ag(C6H4N3O3)]n or [Ag(pyzca)]n (where pyzca is 3‐aminocarbonylpyrazine‐2‐carboxylate), (I), was obtained by silver‐catalysed partial hydrolysis of pyrazine‐2,3‐dicarbonitrile in aqueous solution. The compound has a distorted trigonal–planar coordination geometry around the AgI ion, with each ligand bridging three AgI ions to form a one‐dimensional strand of molecules parallel to the b axis. An extensive hydrogen‐bond pattern connects these strands to form a three‐dimensional network of mog topology.  相似文献   

13.
In order to explore the chemistry of the bidentate ligand 2,2‐dimethylpropane‐1,3‐diyl diisocyanide and to investigate the effect of counter‐ions on the polymeric structure of (2,2‐dimethylpropane‐1,3‐diyl diisocyanide)silver(I) complexes, the title polymeric compound, [AgI(C7H10N2)]n, was synthesized by treatment of 2,2‐dimethylpropane‐1,3‐diyl diisocyanide with AgI. X‐ray powder diffraction studies show, as expected, a polymeric structure, similar to the very recently reported Cl and NO3 analogues [AgX(C7H10N2)]n (X = Cl or NO3). In the title structure, the AgI centre is bridged to two adjacent AgI neighbours by bidentate 2,2‐dimethylpropane‐1,3‐diyl diisocyanide ligands via the NC groups to form [Ag{CNCH2C(CH3)2CH2NC}]n chains. The iodide counter‐ions crosslink the AgI centres of the chains to form a two‐dimensional polymeric {[Ag{CNCH2C(CH3)2CH2NC}]I}n network. This study also shows that this bidentate ligand forms similar polymeric structures on treatment with AgX, regardless of the nature of the counter‐ion X, and also has a strong tendency to form polymeric complexes rather than dimeric or trimeric ones.  相似文献   

14.
The bifunctional pyridine‐2,3‐dicarboxylic acid (H2pdc) ligand has one N atom and four O atoms, which could bind more than one AgI centre with diverse binding modes. A novel infinite one‐dimensional AgI coordination polymer, namely catena‐poly[[silver(I)‐(μ2‐pyridine‐2,3‐dicarboxylato‐κ2N :O 3)‐silver(I)‐tris(μ2‐5‐methyl‐1,3,4‐thiodiazol‐2‐amine‐κ2N :N ′)] monohydrate ethanol monosolvate], {[Ag2(C7H3NO4)(C3H5N3S)3]·H2O·C2H5OH}n , has been synthesized using H2pdc and 5‐methyl‐1,3,4‐thiadiazol‐2‐amine (tda), and characterized by single‐crystal X‐ray diffraction. One AgI atom is located in a four‐coordinated AgN4 tetrahedral geometry and the other AgI atom is in a tetrahedral AgN3O geometry. A dinuclear AgI cluster formed by three tda ligands with a paddelwheel configuration is bridged by the dianionic pdc2− ligand into a one‐dimensional coordination polymer. Interchain N—H…O hydrogen bonds extend the one‐dimensional chains into an undulating two‐dimensional sheet. The sheets are further packed into a three‐dimensional supramolecular framework by interchain N—H…O hydrogen bonds.  相似文献   

15.
A general class of C3‐symmetric Ag9 clusters, [Ag9S(tBuC6H4S)6(dpph)3(CF3SO3)] ( 1 ), [Ag9(tBuC6H4S)6(dpph)3(CF3SO3)2] ? CF3SO3 ( 2 ), [Ag9(tBuC6H4S)6(dpph)3(NO3)2] ? NO3 ( 3 ), and [Ag9(tBuC6H4S)7(dpph)3(Mo2O7)0.5]2 ? 2 CF3COO ( 4 ) (dpph=1,6‐bis(diphenylphosphino)hexane), with a twisted trigonal‐prism geometry was isolated by the reaction of polymeric {(HNEt3)2[Ag10(tBuC6H4S)12]}n, 1,6‐bis(diphenylphosphino)hexane, and various silver salts under solvothermal conditions. The structures consist of discrete clusters constructed from a girdling Ag9 twisted trigonal prism with the top and bottom trigonal faces capped by diverse anions (i.e., S2? and CF3SO3? for compound 1 , 2×CF3SO3? for compound 2 , 2×NO3? for compound 3 , and tBuC6H4S? and Mo2O72? for compound 4 ). This trigonal prism is bisected by another shrunken Ag3 trigon at its waist position. Interestingly, two inversion‐related Ag9 trigonal‐prismatic clusters are dimerized by the Mo2O72? ion in compound 4 . The twist is amplified by the bulkier thiolate, which also introduces high steric‐hindrance for the capping ligand, that is, the longer dpph ligand. Four more silver–sulfur clusters (namely, compounds 5 – 8 ) with their nuclearity ranging from 6–10 were solely characterized by single‐crystal X‐ray diffraction to verify the above‐described synergetic effect of mixed ligands in the construction of Ag9 twisted trigonal prisms. Surprisingly, only cluster 1 emits yellow luminescence at λ=584 nm at room temperature, which may be attributed to a charge transfer from the S 3p orbital to the Ag 5s orbital, or mixed with metal‐centered (MC) d10→d9s1 transitions. Upon cooling from 300 to 80 K, the emission intensity was enhanced along with a hypsochromic shift. The good linear relationship between the maximum emission intensity and the temperature for compound 1 in the range of 180–300 K indicates that this is a promising molecular luminescent thermometer. Furthermore, cyclic voltammetric studies indicated that the diffusion‐ and surface‐controlled redox processes were determined for compounds 1 and 3 as well as compound 4 , respectively.  相似文献   

16.
{Ag2(12‐C≡C‐closo‐1‐CB11H11)}n and selected pyridine ligands have been used for the synthesis of photostable AgI clusters that, with one exception, exhibit for AgI compounds unusual room‐temperature phosphorescence. Extraordinarily intense phosphorescence was observed for a distorted pentagonal bipyramidal AgI7 cluster that shows an unprecedented quantum yield of Φ=0.76 for AgI clusters. The luminescence properties correlate with the structures of the central AgIn motifs as shown by comparison of the emission properties of the clusters with different numbers of AgI ions, different charges, and electronically different pyridine ligands.  相似文献   

17.
We introduce the class of discrete silver(I)‐palladium(II)‐oxo nanoclusters with the preparation of {Ag4Pd13} and {Ag5Pd15}. Both polyanions represent the first examples of noble metal‐capped polyoxo‐noble‐metalates in a fully inorganic assembly, featuring an unprecedented host–guest mode containing hetero‐ and homometallic Ag–Pd and Ag–Ag bonding interactions. Comprehensive theoretical calculations suggest that the Ag–Pd metallic bonds originate partially from surface confinement of AgI guest ions onto the anionic polyoxopalladate host that is induced by strong electrostatic forces. This work opens the field of fully inorganic silver‐palladium‐oxo nanoclusters, which can be considered as discrete mixed noble metal precursors for the formation of monodisperse core–shell nanoparticles, with high relevance for catalysis.  相似文献   

18.
Two novel two‐dimensional silver(I) polymers, [Ag(5‐bsa)]n ( 1 ) and [Ag(2‐aba)]n ( 2) (5‐bsaH = 5‐bromosalicylic acid and 2‐abaH = 2‐aminobenzoic acid), have been synthesized from the reaction of Ag2O and carboxylate ligands in ammonia solution and structurally determined by single‐crystal X‐ray diffraction analyses. 1 crystallizes in the monoclinic space group P21/c with a = 7.316(2), b = 8.171(2), c = 13.051(3) Å, U = 777.0(3) Å3, β = 95.14(3) and Z = 4. 2 crystallizes in the orthorhombic space group Pna21 with a = 5.9486(8), b = 24.227(3), c = 4.9042(6) Å, U = 706.8(2) Å3, and Z = 4. In 1 , 5‐bsa serves as tridentate ligands coordinating to three Ag+ ions through its hydroxyl and bridging ligand carboxyl groups, with the Ag‐Ag bonding and two carboxylate ions defined in a slight distorted plane and further extending into a two‐dimension layer through the hydroxyl and the overlapping and off‐set stacking interactions. In 2 , adjacent Ag+ ions via Ag‐Ag bonding interactions generate a one‐dimension silver chain and adjacent silver chains are further linked by μ2‐N, O atoms of 2‐aba to result in a two‐dimensional configuration, with the inter‐chain hydrogen bonding interaction forming a three‐dimension supramolecular structure. Both the two silver(I) complexes have strong inhibitory activities against Jack Bean urease with the IC50 values of 21.98 μM for 1 and 25.34 μM for 2 , but neglectable inhibition activity on Xanthine Oxidase.  相似文献   

19.
The synthesis of a zinc(II) porphyrin 1 with four appended triazolyl–pyridine chelates is reported. Complexation of the porphyrin peripheral ligands with AgI ions in a 1:2 binding stoichiometry afforded quantitatively the coordination cage [Ag4( 1 )2]4+. The assembly and disassembly processes of the cage were investigated in solution using UV/Vis spectroscopy. The mathematical analysis of the data obtained in the UV/Vis titration of 1 with AgI confirmed the assembly in CH2Cl2/MeOH (90:10) solution of a species having a 1:2 porphyrin/silver stoichiometry and assigned to it an overall stability constant of 5.0×1026 M ?5. The use of a model system allowed an independent assessment of a microscopic binding constant value (Km) for the interaction between the triazolyl‐pyridine ligand and AgI. The coincidence that existed between the Km values extracted from the model system and the titration of 1 provided an indication of the quality and fit of the data analysis. It also allowed the calculation of the average effective molarity (EM) value for the three intramolecular processes that led to the cage assembly as 2.6 mM . Simulated speciation profiles supported the conclusion that at millimolar concentration and working under strict stoichiometric control of the silver/porphyrin ratio, the cage [Ag4( 1 )2]4+ was the species exclusively assembled in solution. On the other hand, when the concentration of added AgI was approximately 2.6 mM , 50 % of the coordination cage disassembled into open aggregates.  相似文献   

20.
The synthesis and structure of a giant 102‐silver‐atom nanocluster (NC) 1 is presented. X‐ray structural analysis reveals that 1 features a multi‐shelled metallic core of Ag6@Ag24@Ag60@Ag12. An octahedral Ag6 core is encaged by a truncated octahedral Ag24 shell. The Ag24 shell is composed of a hitherto unknown sodalite‐type silver orthophosphate cluster (SOC) {(Ag3PO4)8}, reminiscent of the Ag3PO4 photocatalyst. The SOC is capped by six interstitial sulfur atoms, giving a unique anionic cluster [Ag6@{(Ag3PO4)8}S6]6?, which functions as an intricate polyhedral template with abundant surface O and S atoms guiding the formation of a rare rhombicosidodecahedral Ag60 shell. An array of 6 linear Ag2 staples further surround this Ag60 shell. [Ag6@{(Ag3PO4)8}S6]6? is an unusual Ag‐based templating anion to induce the assembly of a SOC within silver NC. This finding provides molecular models for bulk Ag3PO4, and offers a fresh template strategy for the synthesis of silver NCs with high symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号