首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graphene nanosheets modified glassy carbon electrode (GNs/GCE) was fabricated as voltammetric sensor for rutin with good sensitivity, selectivity and reproducibility. The sensor exhibits an adsorption‐controlled, reversible two‐proton and two electron transfer reaction for the oxidation of rutin with a peak‐to‐peak separation (ΔEp) of 26 mV as revealed by cyclic voltammetry. Moreover, the redox peak current increased about 14 times than that on bare glassy carbon electrode (GCE). The linear response of the sensor is from 1×10?7 to 1×10?5 M with a detection limit of 2.1 × 10?8 M (S/N = 3). The method was successfully applied to determine rutin in tablets with satisfied recovery.  相似文献   

2.
Diphenylamine (DPA) monomers have been electropolymerized on the amino‐functionalized multiwalled carbon nanotube (AFCNT) composite film modified glassy carbon electrode (GCE) by cyclic voltammetry (CV). The surface morphology of PDPA‐AFCNT was studied using field‐emission scanning electron microscopy (FE‐SEM). The interfacial electron transfer phenomenon at the modified electrode was studied using electrochemical impedance spectroscopy (EIS). The PDPA‐AFCNT/GCE represented a multifunctional sensor and showed good electrocatalytic behavior towards the oxidation of catechol and the reduction of hydrogen peroxide. Rotating‐disk electrode technique was applied to detect catechol with a sensitivity of 1360 µA mM?1 cm?2 and a detection limit of 0.01 mM. Amperometric determination of hydrogen peroxide at the PDPA‐AFCNT film modified electrode results in a linear range from 10 to 800 µM, a sensitivity of 487.1 µA mM?1 cm?2 and detection limit of 1 µM. These results show that the nano‐composite film modified electrode can be utilized to develop a multifunctional sensor.  相似文献   

3.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

4.
N‐(3,4‐dihydroxyphenethyl)‐3,5‐dinitrobenzamide modified multiwall carbon nanotubes paste electrode was used as a voltammetric sensor for oxidation of penicillamine (PA), uric acid (UA) and tryptophan (TP). In a mixture of PA, UA and TP, those voltammograms were well separated from each other with potential differences of 300, 610, and 310 mV, respectively. The peak currents were linearly dependent on PA, UA and TP concentrations in the range of 0.05–300, 5–420, and 1.0–400 µmol L?1, with detection limits of 0.021, 2.0, and 0.82 µmol L?1, respectively. The modified electrode was used for the determination of those compounds in real samples.  相似文献   

5.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

6.
Gold‐copper alloy nanoparticles (AuCu NPs) were electrodeposited on a graphene – ionic liquid composite film (EGN‐IL). The AuCu NPs showed high electrocatalysis to the oxidation of hydrazine with a catalytic reaction rate constant of about 5.0×104 mol/Ls. In phosphate buffer solutions (pH 6.8) the oxidation current of hydrazine at 0.15 V (vs. SCE) at the resulting electrode (AuCu? EGN‐IL/GCE) was linear to its concentration in the range of 0.2–110 µM with a sensitivity of 56.7 µA/mM, and the detection limit was 0.1 µM (S/N=3). The electrode was successfully applied to the determination of waste water.  相似文献   

7.
A silicon carbide nanoparticle‐coated glassy carbon electrode (SiCNPs‐GCE) was employed for electrochemical determination of Quinalphos (QNP) using different electroanalytical techniques. QNP showed an enhancement in the reduction peak current at SiCNPs modified GCE in pH 7.0 (BR Buffer). The peak current was found to be linear with the QNP concentration in the range from 6.69×10?9 to 1.34×10?6 M (r=0.995) with detection limit of 1.34×10?9 M (S/N=3). The developed sensor (SiCNPs‐GCE) was employed for QNP determination in tap water, lake water, soil, mango as well as in biological samples.  相似文献   

8.
This paper demonstrates for the first time, successful electrocatalytic oxidation of electroactive estrogenic phenolic compounds (EPCs) at a nickel‐modified glassy carbon electrode (Ni‐GCE). The electrode was evaluated in terms of electrocatalytic activity, sensitivity, linear dynamic range, limit of detection, and response stability. In comparison to bare glassy carbon electrode, current amplification was observed for EPCs at Ni‐GCE, for example, for a 40 µM estrone at Ni‐GCE was amplified by a factor of 1224. The Ni‐GCE gave good figures of merit with no evidence of electrode fouling. As an example, the limit of detection (S/N=3) for 17β‐estradiol was 100 nM and the response precision (n=5) was 3.4 %.  相似文献   

9.
Platinum nanoparticles (Ptnano) decorated multiwalled carbon nanotubes (MWCNTs)–1‐octyl‐3‐methylimidazolium hexafluorophosphate ([omim][PF6]) composite material (MWCNTs‐Ptnano‐[omim][PF6]) was fabricated and characterized for the first time. In the presence of [omim][PF6], more Ptnano could deposit on MWCNTs. The average diameter of the deposited Ptnano was about 5 nm. The composite material film coated glassy carbon electrode (GCE) exhibited sensitive voltammetric response to theophylline (TP). Under the optimized conditions (i.e., preconcentration for 2 minutes on open circuit in 0.10 M pH 3.0 phosphate buffer), the anodic peak current of TP at about 1.1 V (vs. SCE) was linear to TP concentration over the range of 1.0×10?8–1.0×10?5 M. The detection limit was estimated to be 8.0×10?9 M. The modified electrode was successfully applied to the determination of TP in medicine tablet and green tea. In addition, the voltammetric responses of hypoxanthine (HX), xanthine (Xan) and uric acid (UA) on the MWCNTs‐Ptnano‐[omim][PF6]/GCE were also discussed.  相似文献   

10.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

11.
A fullerene‐C60‐modified glassy carbon electrode has been examined for the simultaneous determination of 2′‐deoxyadenosine (2′‐dAdo) and adenine in human blood and urine using Osteryoung square‐wave voltammetry (OSWV) at pH 7.2. Compared to bare glassy carbon electrode (GCE), the modified electrode displays a shift of the oxidation potential in the negative direction with significant increase in the peak current for both the analytes. At modified electrode well‐defined anodic peaks at potential of 1248 mV and 994 mV are observed for 2′‐dAdo and adenine respectively. Linear calibration curves were obtained within the concentration range 10 nM to 100 μM for both the compounds in 0.1 M phosphate buffer solution (PBS) with the limit of detection 0.8×10?8 M and 0.95×10?8 M for 2′‐dAdo and adenine respectively. The analytical utility of the present method is demonstrated by quantitative detection of 2′‐dAdo and adenine in human urine of normal subjects as well as in patients with hepatocellular carcinoma. Interfering effect of some coexisting metabolites has also been reported.  相似文献   

12.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   

13.
Acyclovir is an antiviral effective drug active compound. A glassy carbon electrode (GCE) was modified with an electropolymerized film of p‐aminobenzene sulfonic acid (p‐ABSA) in phosphate buffer solution (PBS). The polymer film‐modified electrode was used to electrochemically detect acyclovir. Polymer film showed excellent electrocatalytic activity for the oxidation of acyclovir. The anodic peak potential value of the acyclovir at the poly(p‐ABSA) modified glassy carbon electrode was 950 mV obtained by DPV. A linear calibration curve for DPV analysis was constructed in the acyclovir concentration range 2×10?7–9×10?6 mol L?1. Limit of detection (LOD) and limit of quantification (LOQ) were obtained as 5.57×10?8 and 1.85×10?7 mol L?1 respectively. The proposed method exhibits good recovery and reproducibility.  相似文献   

14.
An ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6)‐single‐walled carbon nanotube (SWNT) gel modified glassy carbon electrode (BMIMPF6‐SWNT/GCE) is fabricated. At it the voltammetric behavior and determination of p‐nitroaniline (PNA) is explored. PNA can exhibit a sensitive cathodic peak at ?0.70 V (vs. SCE) in pH 7.0 phosphate buffer solution on the electrode, resulting from the irreversible reduction of PNA. Under the optimized conditions, the peak current is linear to PNA concentration over the range of 1.0×10?8–7.0×10?6 M, and the detection limit is 8.0×10?9 M. The electrode can be regenerated by successive potential scan in a blank solution for about 5 times and exhibits good reproducibility. Meanwhile, the feasibility to determine other nitroaromatic compounds (NACs) with the modified electrode is also tested. It is found that the NACs studied (i.e., p‐nitroaniline, p‐nitrophenol, o‐nitrophenol, m‐nitrophenol, p‐nitrobenzoic acid, and nitrobenzene) can all cause sensitive cathodic peaks under the conditions, but their peak potentials and peak currents are different to some extent. Their peak currents and concentrations show linear relationships in concentration ranges with about 3 orders of magnitude. The detection limits are 8.0×10?9 M for p‐nitroaniline, 2.0×10?9 M for p‐nitrophenol, 5.0×10?9 M for o‐nitrophenol, 5.0×10?9 M for m‐nitrophenol, 2.0×10?8 M for p‐nitrobenzoic acid and 8.0×10?9 M for nitrobenzene respectively. The BMIMPF6‐SWNT/GCE is applied to the determination of NACs in lake water.  相似文献   

15.
《Analytical letters》2012,45(7):1289-1298
Abstract

Poly (acridine orange) (PAO) film–modified electrode was prepared by the electrooxidation of Acridine orange on a glassy carbon electrode (GCE) for the detection of hydroquinone in the presence of o‐hydroquinone and m‐hydroquinone. The electrochemical behavior of hydroquinone on the modified electrode was investigated with respect to different solution acidity, scan rate, and accumulation time. A pair of sharp and well‐defined peaks was obtained at 0.45 and 0.42 V [vs. a saturated calomel electrode (SCE)] at the PAO film–modified electrode. The potential difference between this pair of cathodic and anodic peaks was decreased to only 30 mV as compared to the 241 mV that was obtained on the bare glassy carbon electrode (GCE). As to o‐hydroquinone and m‐hydroquinone, their corresponding oxidation peaks appeared at 0.55 V and 0.89 V (vs. SCE), respectively. The oxidation potential differences between these three isomers enabled the separate detection of hydroquinone. Under the optimum experimental situation, the oxidation peak current of hydroquinone was proportional to the concentration at the range of 6.8×10?7–9.6×10?5 M. The detection limit was been estimated as 3×10?7 M with 130 s accumulation. This method was applied to the hydroquinone detection in tap water samples.  相似文献   

16.
A modified electrode was prepared using electrodeposition methods to immobilize caffeic acid (CAF) onto the surface of a glassy carbon electrode (GCE) to create a polymer suitable for biosensor development. The polymer film coverage of the surface bound species was further optimized using electrodeposition methods, thus increasing the surface coverage to ca. 10?9 mol cm?2. Using cyclic voltammetry, the modified carbon electrode was used to facilitate and observe the electrocatalytic oxidation of coenzymes such as NADH, cysteine, and glutathione at different concentrations. A calibration curve was determined in each case within the concentration range; 300 nM to 10 mM, with the limits of detection (LOD) of 246 µM, 99 µM, 2.2 µM for NADH, cysteine, and glutathione respectively.  相似文献   

17.
《Electroanalysis》2005,17(11):941-945
A glassy carbon electrode (GCE) was modified with electropolymerized films of cresol red in pH 5.6 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode shows an excellent electrocatalytic effect on the oxidation of norepinephrine (NE). The peak current increases linearly with the concentration of NE in the range of 3×10?6–3×10?5 M by the differential pulse voltammetry. The detection limit was 2×10?7 M. The modified electrode can also separate the electrochemical responses of norepinephrine and ascorbic acid (AA). The separation between the anodic peak potentials of NE and AA was 190 mV by the cyclic voltammetry. And the responses to NE and AA at the modified electrode were relatively independent.  相似文献   

18.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

19.
A silver nanoparticle decorated poly(thiophene) modified glassy carbon electrode (GCE) was prepared for determination of caffeic acid. The Ag/PTh/GCE surface was characterized by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX) spectroscopy. The modified electrode has shown higher electrocatalytic activity towards the oxidation of caffeic acid. The peak current of was found linear in the concentration range from 1.00×10?8 to 4.83×10?6 M with a detection limit of 5.3×10?9 M (S/N=3). The modified electrode was used for determination of CA concentration in red wine samples. The thermodynamic constants, entropy change (ΔS), enthalpy change (ΔH) and Gibbs free energy change (ΔG) were calculated as ?166.34 J/(mol K), ?154.24 kJ/mol and ?104.75 kJ/mol at 25 °C, respectively.  相似文献   

20.
《Electroanalysis》2005,17(10):832-838
A simply and high selectively electrochemical method for simultaneous determination of hydroquinone and catechol has been developed at a glassy carbon electrode modified with multiwall carbon nanotubes (MWNT). It was found that the oxidation peak separation of hydroquinone and catechol and the oxidation currents of hydroquinone and catechol greatly increase at MWNT modified electrode in 0.20 M acetate buffer solution (pH 4.5). The oxidation peaks of hydroquinone and catechol merge into a large peak of 302 mV (vs. Ag/AgCl, 3 M NaCl) at bare glassy carbon electrode. The two corresponding well‐defined oxidation peaks of hydroquinone in the presence of catechol at MWNT modified electrode occur at 264 mV and 162 mV, respectively. Under the optimized condition, the oxidation peak current of hydroquinone is linear over a range from 1.0×10?6 M to 1.0×10?4 M hydroquinone in the presence of 1.0×10?4 M catechol with the detection limit of 7.5×10?7 M and the oxidation peak current of catechol is linear over a range from 6.0×10?7 M to 1.0×10?4 M catechol in the presence of 1.0×10?4 M hydroquinone with the detection limit of 2.0×10?7 M. The proposed method has been applied to simultaneous determination of hydroquinone and catechol in a water sample with simplicity and high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号