首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Bortezomib is the first therapeutic proteasome inhibitor used for cancer treatment. The redox behaviour of bortezomib was investigated over a wide pH range. Bortezomib undergoes electrochemical oxidation and reduction in independent mechanisms. The oxidation of bortezomib is pH‐dependent for pH<7.5 and occurs with the transfer of one electron and one proton involving the formation of two electroactive oxidation products. The reduction of bortezomib is quasi‐reversible, pH‐dependent, involving the transfer of two electrons and two protons and does not involve the formation of electroactive products. The value of pKa≈7.5 was determined. Mechanisms for oxidation and reduction were proposed.  相似文献   

2.
The electrochemical behavior of Na‐salt of 2‐methyl‐3‐(4‐nitrophenyl)acrylate (NPA) and its reduction product was studied by cyclic (CV), differential pulse(DPV) and square wave voltammetry (SWV) using a glassy carbon electrode (GCE). The results revealed that NPA is irreversibly reduced leading to the formation of a reduction product (PNPA). For pH<9.0 the peak potential was linearly dependent on pH. For pH>9.0 the peak potential was pH‐independent and the value of pKb≈9.0 was determined. The adsorbed PNPA exhibited reversible redox reaction. The reduction of PNPA was pH dependent. To ensure that the electrochemical behavior of NPA is due to the reducible moiety, NO2, closely related compounds to NPA were also studied, and a redox mechanism was proposed for NPA.  相似文献   

3.
《Analytical letters》2012,45(15):2860-2871
Abstract

A voltammetric study of the oxidation of disopyramide has been carried out using a glassy carbon electrode. The electrochemical oxidation of disopyramide was investigated by cyclic, differential pulse, and square wave voltammetry. The oxidation of disopyramide is an irreversible, diffusion‐controlled process. The diffusion coefficient of disopyramide was calculated in pH 7.0 phosphate buffer to be D disopyramide=3.8×10?6 cm2 s?1. The oxidation of disopyramide is also pH dependent and for electrolytes with pH between 4 and 7 occurs with the transfer of one electron and one proton. In alkaline electrolytes, two consecutive charge transfer reactions are observed: both oxidation reactions involve the transfer of two electrons but only the first also involves the transfer of two protons. Two procedures for the analytical determination of disopyramide in pH 7.0 phosphate buffer were developed and compared and a detection limit LOD=1.27 µM was obtained.  相似文献   

4.
Ochratoxin A (OTA) is a fungal metabolite that occurs in foods, beverages, animal tissues, human blood and presents carcinogenic, teratogenic and nephrotoxic properties. This study concerns the redox properties of OTA using electrochemical techniques which have the potential for providing insights into the biological redox reactions of this molecule. The in situ evaluation of the OTA interaction with DNA using a DNA-electrochemical biosensor is also reported.The oxidation of OTA is an irreversible process proceeds with the transfer of one electron and one proton in a diffusion-controlled mechanism. The diffusion coefficient of OTA was calculated in pH 7 phosphate buffer to be DO = 3.65 × 10−6 cm2 s−1. The oxidation of OTA is also pH dependent for electrolytes with pH < 7 and involves the formation of a main oxidation product which adsorbs strongly at the GCE surface undergoing reversible oxidation. In alkaline electrolytes OTA undergoes chemical deprotonation, the oxidation involving only the transfer of one electron.The electrochemical dsDNA-biosensor was also used to evaluate the possible interaction between OTA and DNA. The experiments have clearly proven that OTA interacts and binds to dsDNA strands immobilized onto a GCE surface, but no evidence of DNA-damage caused by OTA was obtained.  相似文献   

5.
《Electroanalysis》2005,17(3):269-274
The electrochemical behavior of nitrofurazone (NFZ) at a highly boron doped diamond (BDD) electrode was studied in Britton‐Robinson (BR) buffer using cyclic voltammetry. NFZ was directly reduced to the amine derivative (RNH2) in the pH range of 2.0 to 4.0 in a process involving six (6.0±0.4) electrons and six protons. In the range of pH 7.0 to 12 and, predominantly aqueous medium, the reduction step split into its two components: the reduction of NFZ to the radical anion (RNO2.?) and reduction of RNO2.? to hydroxylamine derivative (RNHOH) in processes involving one and three (3.1±0.1) electrons, respectively. On the anodic scan of the voltammograms and at pH 8.0, the oxidation of the hydroxylamine to the nitroso derivative (RNO), was observed in a process involving 2 (1.7±0.2) electrons and 2 protons. In addition and unreported in the literature on any electrode material, was the detection of a new oxidation peak at pH>8.0, which was observed regardless of whether NFZ had been previously reduced or not. The calculation of n, number of electrons, involved in each electrochemical step was satisfactorily accomplished using the Randles‐?evcik equation.  相似文献   

6.
《Analytical letters》2012,45(17):3309-3321
Abstract

The mechanism of the electrochemical oxidation of p‐coumaric acid on a glassy carbon electrode was investigated using cyclic, differential pulse, and square wave voltammetry at different pHs. The oxidation of p‐coumaric acid is irreversible over the whole pH range. After successive scans, the p‐coumaric acid oxidation product deposits on the electrode surface, forming a polymeric film that undergoes reversible oxidation at a lower potential than p‐coumaric acid. This polymeric film increases in thickness with the number of scans, covering the electrode surface, and impeding the diffusion of the p‐coumaric acid and its oxidation on the electrode. The oxidation of p‐coumaric acid is pH dependent up until values close to the pKa. For pHs higher than pKa, the p‐coumaric acid oxidation process is pH independent. An electroanalytical determination procedure of p‐coumaric in pH 8.7 0.2 M ammonium buffer was developed, and a detection limit, LOD=83 nM, and the limit of quantification, LOQ=250 nM, were obtained.  相似文献   

7.
We quantified changes in interfacial pH local to the electrochemical double layer during electrocatalysis by using a concurrent non‐faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis‐2‐butene‐1,4‐diol to form a mixture of 1,4‐butanediol and n‐butanol with selectivity that is linearly dependent on the bulk solution pH value. We show that kinetic branching occurs from a common surface‐bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH value within molecular length scales of the surface. We used the pH‐dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and found that the local pH value can vary dramatically (>3 units) relative to the bulk value even at modest current densities in well‐buffered electrolytes. This study highlights the key role of interfacial pH variation in modulating inner‐sphere electrocatalysis.  相似文献   

8.
《Electroanalysis》2017,29(2):538-547
A few novel metal complexes of chelidonic acid (chelH2), namely [Ca(chel)(H2O)3] ( 1 ), [Cu(chel)(H2O)5] ⋅ 2H2O ( 2 ) and [VO(chel)(H2O)3] ⋅ 2H2O ( 3 ) were prepared, identified by elemental analysis and characterized by electrochemical methods. IR‐spectra and thermal stability in solid state are discussed as well. The electrochemical characteristics of the free chelidonic acid and its complexes 1 – 3 were studied by (cyclic) square‐wave voltammetry, on static mercury drop electrode (SMDE) and paraffin‐impregnated graphite electrode (PIGE), in aqueous media over a wide pH range. The reduction of chelidonic acid on SMDE is a kinetically controlled electrode reaction, occurring with the transfer of one electron and two protons for 1<pH<6, whereas in very alkaline media the electron transfer is pH independent, i.e . the mechanism of electro‐reduction of chelH2 is proposed. The experimental parameters of the electroanalytical procedure were optimized and the method was applied for the investigation of the metal ion coordination preferences toward chelidonic acid. For the direct determination of solid complexes 1 – 3 , SW voltammetry of microparticles was used.  相似文献   

9.
《Electroanalysis》2002,14(24):1728-1732
An electrochemical study related to the electrooxidation of 4‐amino‐3‐thio‐5‐methyl‐1,2,4‐triazole (I), 4‐amino‐3‐thio‐5‐phenyl‐1,2,4‐triazole (II) and 3‐thio‐5‐phenyl‐1,2,4‐triazole (III), in 10% v/v methanol‐acetate buffer pH 4.6 has been performed. A variety of electrochemical techniques such as differential pulse voltammetry, cyclic voltammetry, double‐potential step chronoamperometry, rotating‐disk electrode voltammetry and coulometry, were employed to clarify that the mechanism of the electrode process follows the oxidation of thiol compounds. All the compounds exhibit similar redox behavior under the given conditions. They display one irreversible oxidation peak, which is diffusion controlled. From the plot of current function in cyclic voltammetry and the ratio of ic/ia less than one in double‐potential step chronoamperometry, it was established that these compounds undergo an one electron oxidation followed by a dimerization process involving the formation of disulfide derivative (EC mechanism). The pKa values were obtained by the dependence of limiting current and potential with in the wide pH interval. The transfer coefficients, the diffusion coefficients and rate constant of coupled chemical reaction were also reported. The substituent effects were also investigated.  相似文献   

10.
The electrochemical redox behavior of omeprazole (OMZ), a gastric acid pump inhibitor, was investigated at a glassy carbon electrode using cyclic, differential pulse and square‐wave voltammetry over a wide pH range. The pH‐dependent oxidation occurs in two irreversible consecutive charge transfer reactions. Adsorption of the nonelectroactive product was also observed. The first oxidation involves removal of one electron, followed by deprotonation and leads to the formation of a hydroxylated species. The second oxidation process is related to the hydroxyl and amino groups in the benzimidazole moiety. The reduction is irreversible, also pH‐dependent, and occurs in a single step at the sulfoxide group in a diffusion‐controlled mechanism. The diffusion coefficient of omeprazole was calculated to be DOMZ=2.31×10?6 cm2 s?1.  相似文献   

11.
《Electroanalysis》2005,17(19):1755-1760
Electrochemical oxidation of catechol has been studied in the presence of secondary amines as nucleophiles in aqueous solution with various pH values using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry of catechol in pure buffered solution (2.00 pH<9.00) shows one anodic and corresponding cathodic peak which relates to the transformation of catechol to corresponding o‐benzoquinone and vice versa within a quasi‐reversible two electron transfer process. Also, a little amount of o‐benzoquinone undergoes polymerization reaction. Cyclic voltammogram of catechol in the presence of nucleophilic amines, show one anodic peak in the first scan of potential but on the reverse scan the corresponding cathodic peak disappear and new peak is observed at less positive potential. In the second scan of potential also a new anodic peak is observed. On the other hand at high concentration of amines the redox peak attributable to formed polymer disappear showing that in this condition the polymerization reaction occurs at non‐measurable extent. On the basis of these observations we propose an ECE mechanism for the electrochemical oxidation of catechol in the presence of secondary amines.  相似文献   

12.
The photolysis of folic acid (=N‐(4‐{[(2‐amino‐1,4‐dihydro‐4‐oxopteridin‐6‐yl)methyl]amino}benzoyl)‐L ‐glutamic acid) in alkaline aqueous solution (pH 10.0–11.0) was carried out at 350 nm at room temperature and monitored by UV/VIS spectrophotometry, anal. and prep. thin‐layer chromatography (TLC), and high‐performance liquid chromatography (HPLC, HPLC/MS). The folate species underwent at least two independent photo‐oxidation pathways, which were not observed when the acid form was photolyzed at pH<7. The presence of O2 was essential in these oxidation pathways. Evidence for the role of singlet oxygen was established. In one of the pathways, the folate underwent cleavage, yielding 6‐formylpterin (=2‐amino‐1,4‐dihydro‐4‐oxopteridine‐6‐carboxaldehyde) and (4‐aminobenzoyl)glutamic acid as photoproducts. The other pathway yielded a new photostable product A of molecular mass 455, which could be isolated and stored in acidic or neutral aqueous solution. However, A was rather unstable in alkaline media undergoing a thermal reaction to a product B of lower molecular mass (427). The kinetics of this thermal reaction was analyzed with a stopped‐flow spectrophotometer. A linear dependence of the first‐order rate constant with the OH concentration was observed. The corresponding bimolecular rate constant was 1.1 M −1 s−1. The quantum yields of substrate consumption and of photoproduct formation were determined. The here‐reported photochemical behavior of folate solutions departs from results in acid media, where phototransformation proceeded via the cleavage of the acid form into 6‐formylpterin and (4‐aminobenzoyl)glutamic acid as the first major photoproducts, and where no thermal reactions were observed.  相似文献   

13.
The oxidation of chlorobenzene (CB) was studied by electrochemical electrolysis using boron-doped diamond (BDD), PbO2 or platine (Pt) as anode and graphite bar as cathode. The effect of applied current density, supporting electrolyte and initial pH value were also studied. The results demonstrated that BDD anode had the best effectiveness and accomplishment of electrochemical degradation of CB compared to PbO2 and Pt anodes. For a current density of 20 mA/cm2 and at pH = 3, the elimination of COD and TOC were about 97% and 98%, respectively, after 360 min of electrolysis with the BDD anode. Pseudo-first order kinetics appears to be the most appropriate to describe the degradation of chlorobenzene. The electrochemical mechanism of chlorobenzene on BDD was proposed based on the identified intermediates.  相似文献   

14.
A copolymer, poly(aniline‐co‐o‐aminophenol), was prepared chemically by using ammonium peroxydisulfate as an oxidant. The monomer concentration ratio of o‐aminophenol to aniline strongly influences the copolymerization rate and properties of the copolymer. The optimum composition of a mixture for the chemical copolymerization consisted of 0.3 M aniline, 0.021 M o‐aminophenol, 0.42 M ammonium peroxydisulfate, and 2 M H2SO4. The result of cyclic voltammograms in a potential region of ?0.20 to 0.80 V (vs.SCE) indicates that the electrochemical activity of the copolymer prepared under the optimum condition is similar to that of polyaniline in more acid solutions. However, the copolymer still holds the good electrochemical activity until pH 11.0. Therefore, the pH dependence of the electrochemical property of the copolymer is improved, compared with poly(aniline‐co‐o‐aminophenol) prepared electrochemically, and is much better than that of polyaniline. The spectra of IR and 1H NMR confirm that o‐aminophenol units are included in the copolymer chain, which play a key role in extending the usable pH region of the copolymer. The visible spectra of the copolymers show that a high concentration ratio of o‐aminophenol to aniline in a mixture inhibits the chain growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5573–5582, 2007  相似文献   

15.
The electrochemical behaviour of Nodularin (NOD), a hepatotoxic cyclic pentapeptide, was studied at a glassy carbon electrode. NOD electrochemical oxidation is an irreversible, pH‐independent process, involving the transfer of one electron. Upon incubation in different pH electrolytes, chemical degradation of NOD was electrochemically detected by the appearance of a new oxidation peak. The chemically degraded NOD (cdNOD), undergoes an irreversible, pH‐dependent oxidation, and its redox products are reversibly oxidised. The charge transfer properties of cdNOD as well as of its redox metabolites were investigated. Mechanisms for NOD oxidation, NOD chemical degradation and oxidation of cdNOD and its metabolites were proposed.  相似文献   

16.
MXenes are a class of two‐dimensional (2D) transition metal carbides, nitrides and carbonitrides that have shown promise for high‐rate pseudocapacitive energy storage. However, the effects that irreversible oxidation have on the surface chemistry and electrochemical properties of MXenes are still not understood. Here we report on a controlled anodic oxidation method which improves the rate performance of titanium carbide MXene (Ti3C2Tx, Tx refers to ‐F, =O, ‐Cl and ‐OH) electrodes in acidic electrolytes. The capacitance retention at 2000 mV s?1 (with respect to the lowest scan rate of 5 mV s?1) increases gradually from 38 % to 66 % by tuning the degree of anodic oxidation. At the same time, a loss in the redox behavior of Ti3C2Tx is evident at high anodic potentials after oxidation. Several analysis methods are employed to reveal changes in the structure and surface chemistry while simultaneously introducing defects, without compromising electrochemically active sites, are key factors for improving the rate performance of Ti3C2Tx. This study demonstrates improvement of the electrochemical performance of MXene electrodes by performing a controlled anodic oxidation.  相似文献   

17.
《Electroanalysis》2006,18(18):1800-1807
The electrochemical behavior of the antileukemia drug glivec was investigated at a glassy carbon electrode (GCE). The oxidation is a complex, pH‐dependent, irreversible electrode process involving the transfer of 2 electrons and 2 protons and the formation of an electroactive product, Pglivec, which strongly adsorbs on the GCE surface and undergoes reversible oxidation. The adsorption of Pglivec at the GCE surface yields a compact monolayer that inhibits further oxidation of glivec. The electrochemical reduction is a simple pH dependent irreversible process involving the transfer of 2 electrons and 2 protons and occurs with the formation of a nonelectroactive product. The diffusion coefficient of glivec was calculated to be DO=7.35×10?6 cm2 s?1 in pH 4.5 0.1 M acetate buffer.  相似文献   

18.
In this article, for the first time, the analytical method for determination of a novel antagonist of A2A adenosine receptors (8‐(4‐methoxyphenyl)‐4‐oxo‐4,6,7,8‐tetrahydroimidazo[2,1‐c][1,2,4]triazine‐3‐carbohydrazide, namely IMT), which can be used as a drug for liver diseases, was presented. For this purpose a commercially available boron‐doped diamond electrode (BDDE) in combination with differential pulse voltammetry (DPV) was applied. It was found by cyclic voltammetry (CV) that IMT displays at BDDE, as a sensor, two well‐defined oxidation peaks at potentials of 0.81 and 1.18 V and one reduction peak at 1.1 V vs. Ag/AgCl in 0.1 mol L?1 acetate buffer (pH 4.5±0.1). The oxidation and reduction mechanism of IMT was proposed. The developed DPV method allowed the successful determination of IMT in the range of 0.05–50 μmol L?1 with detection limit equal to 0.0094 μmol L?1 and without any chemical modifications and electrochemical pretreatment of the electrode surface. The proposed procedure allows the determination of IMT in vitro directly from urine samples.  相似文献   

19.
The hydroxyl radicals electrochemically generated in situ on a boron-doped diamond (BDD) electrode have been investigated for the first time in different electrolyte media, over the whole pH range between 1 and 11. A more extensive characterisation of BDD electrochemical properties is very important to understand the reactivity of organic compounds towards electrochemical oxidation on the BDD electrode, which is related to their interaction with adsorbed hydroxyl radicals due to water oxidation on the electrode surface. An oxidation peak corresponding to the transfer of one electron and one proton was observed in pH <9 electrolytes, associated with the water discharge process and electrochemical generation of hydroxyl radicals, which can interact and enhance the electro-oxidation of organic compounds. In pH >9 electrolytes the electrochemical generation of hydroxyl radicals was not observed; ammonia buffer electrolyte gave a pH-independent peak corresponding to the ammonia oxidation reaction. Additionally, for most pH values studied, a few small peaks associated with the electrochemical interaction between non-diamond carbon species on the doped diamond electrode surface and the electrolyte were also seen, which suggests that the doped diamond is relatively unreactive, but not completely inert, and the electrogenerated hydroxyl radicals play a role as mediator in the oxidation of organics.  相似文献   

20.
《Electroanalysis》2004,16(3):231-237
The electrochemical oxidation of antipsychotic drug amisulpride (AMS) has been studied in pH range 1.8–11.0 at a stationary glassy carbon electrode by cyclic, differential pulse and square‐wave voltammetry. Two oxidation processes were produced in different supporting electrolyte media. Both of the oxidation processes were irreversible and exhibited diffusion controlled. For analytical purposes, very resolved voltammetric peaks were obtained using differential pulse and square‐wave modes. The linear response was obtained in the range of 4×10?6 to 6×10?4 M for the first and second oxidation steps in Britton‐Robinson buffer at pH 7.0 and pH 3.0 (20% methanol v/v), respectively, using both techniques. These methods were used for the determination of AMS in tablets. The first oxidation process was chosen as indicative of the analysis of AMS in biological media. The methods were successfully applied to spiked human serum, urine and simulated gastric fluid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号