首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a novel derivative of the PIV method for measuring the velocity fields of droplets and gas phases simultaneously using fluorescence images rather than Mie scattering images. Two-phase PIV allows the simultaneous and independent velocity field measurement of the liquid phase droplets and ambient gas in the case of two-phase flow mixing. For phase discrimination, each phase is labelled by a different fluorescent dye: the gas phase is seeded with small liquid droplets, tagged by an efficient fluorescent dye while the droplets of the liquid phases are tagged by a different fluorescent dye. For each phase, the wavelength shift of fluorescence is used to separate fluorescence from Mie scattering and to distinguish between the fluorescence of each phase. With the use of two cross-correlation PIV cameras and adequate optical filters, we obtain two double frame images, one for each phase. Thus standard PIV or PTV algorithms are used to obtain the simultaneous and independent velocity fields of the two phases. Because the two-phase PIV technique relies on the ability to produce two simultaneous and independent images of the two phases, the choice of the labelling dyes and of the associated optical filter sets is relevant for the image acquisition. Thus a spectroscopic study has been carried out to choose the optimal fluorescent dyes and the associated optical filters. The method has been evaluated in a simple two-phase flow: droplets of 30–40 μm diameter, produced by an ultrasonic nozzle are injected into a gas coflow seeded with small particles. Some initial results have been obtained which demonstrate the potential of the method.  相似文献   

2.
A new approach for simultaneous planar measurement of droplet velocity and size with gas phase velocities is reported, which combines the out-of-focus imaging technique ‘Interferometric Laser Imaging Droplet Sizing’ (ILIDS) for planar simultaneous droplet size and velocity measurements with the in-focus technique ‘Particle Image Velocimetry’ (PIV) for gas velocity measurements in the vicinity of individual droplets. Discrimination between the gas phase seeding and the droplets is achieved in the PIV images by removing the glare points of focused droplet images, using the droplet position obtained through ILIDS processing. Combination of the two optical arrangements can result in a discrepancy in the location of the centre of a droplet, when imaging through ILIDS and PIV techniques, of up to about 1 mm, which may lead to erroneous identification of the glare points from droplets on the PIV images. The magnitude of the discrepancy is a function of position of the droplet’s image on the CCD array and the degree of defocus, but almost independent of droplet size. Specifically, it varies approximately linearly across the image along the direction corresponding to the direction of propagation of the laser sheet for a given defocus setting in ILIDS. The experimental finding is supported by a theoretical analysis, which was based on geometrical optics for a simple optical configuration that replicates the essential features of the optical system. The discrepancy in the location was measured using a monodisperse droplet generator, and this was subtracted from the droplet centres identified in the ILIDS images of a polydisperse spray without ‘seeding’ particles. This reduced the discrepancy between PIV and ILIDS droplet centres from about 1 mm to about 0.1 mm and hence increased the probability of finding the corresponding fringe patterns on the ILIDS image and glare points on the PIV image. In conclusion, it is shown that the proposed combined method can discriminate between droplets and ‘seeding’ particles and is capable of two-phase measurements in polydisperse sprays.  相似文献   

3.
Spray analysis of a gasoline direct injector by means of two-phase PIV   总被引:3,自引:0,他引:3  
The hollow-cone spray of a high-pressure swirl injector for a direct-injection spark-ignition (DISI) engine was investigated inside a pressure vessel by means of particle image velocimetry (PIV). As the interaction between the spray droplets and the ambient air is of particular interest for the mixture preparation process, two-phase PIV techniques were applied. To allow phase discrimination, fluorescent seeding particles were used to trace the gas phase. Because of the periodicity of piston engine injection, a statistical evaluation of ensemble-averaged fields to reduce cycle-to-cycle variations and to provide more general information about the two-phase flow was performed. Besides the general spray/air interaction process the investigation of the spray collapse at elevated ambient pressures was the main focus of the study. Future investigations of transient interaction processes require simultaneous techniques in combination with a high-speed camera to resolve the transient interaction phenomena. Therefore, optical filters that attenuate Mie-scattered light and transmit fluorescent light were used to collect both phases on the same image. Consequently, phase separation techniques were employed for data analysis. A masking and a peak separation technique are described and a comparison between the results of an instantaneous two-phase flow field in the spray cone of a DISI injector is presented in the paper.  相似文献   

4.
Centrifugal spray injected at various angles in gas crossflow has been studied experimentally using PIV visualization system and image-processing techniques. Experiments were carried out inside a rectangular duct (95 mm × 95 mm in cross-section) at ambient temperature and pressure, with different gas Reynolds numbers (vary from 12,900 to 45,000) and three injection angles (60°, 90° and 120°). The spray angle of the centrifugal nozzle is 80°, with D32 of 80 μm. The instantaneous images of droplets distribution and the values of the line-averaged D32 at different positions on the cross-sections along the flow field for each condition were obtained, and their flow field configurations were achieved. Quantitative assessments of mixing degree between two phases for different injection angles were determined using a spatial unmixedness parameter. It is found that the addition of droplets into the gas crossflow enhanced the turbulence intensity of the gas crossflow and caused different-scale vortices. The flow field structure, to a great extent, is dependent on the injection angle. The entrainment and centrifugal force of large vortex lead to uneven droplet distribution and moreover influence the mixing of droplets and gas crossflow. A better mixing result can be obtained with the injection angle of nozzles of 60°.  相似文献   

5.
Simultaneous air/fuel-phase PIV measurements in a dense fuel spray   总被引:2,自引:0,他引:2  
Driscoll  K. D.  Sick  V.  Gray  C. 《Experiments in fluids》2003,35(1):112-115
A new diagnostic has been developed that is capable of obtaining simultaneous two-phase velocity measurements in a gasoline direct-injection fuel spray. This technique utilizes a two-laser (double-pulse) two-camera (double-frame) setup to simultaneously image the injected fuel and entrained air to determine the 2D velocity vector fields of both phases using cross-correlation particle image velocimetry (PIV). The air phase is visualized through fluorescence from seeding particles introduced into the static measurement volume while Mie scattering signals are collected from the fuel droplets. The combination of different laser wavelengths and a spectral signal shift for the air phase allows spectral separation of the signals. Independent timing of the laser pulses permits optimized adaptation of the velocity dynamic range for the two phases to account for the large difference in velocities between air and fuel droplets.  相似文献   

6.
To be able to characterize the airflow in the presence of liquid droplets in a confined geometry, a new two-phase particle image velocimetry (PIV) method is developed. It is based on a two-colour YAG laser and two different fluorescent dyes dissolved in the gas-phase tracers and droplets. This approach permits to separate the images (and thus the information) of the two phases optically and simultaneously. When experiments need to be carried out in a confined geometry (such as in a wind tunnel) with uniform droplet distribution and high turbulence, which are the case in the present investigation, one should be able to deal with continuous droplet deposition on the lateral walls through which the cameras acquire images. It requires the adaptation of the experimental conditions and the development of a dynamic background subtraction algorithm. The typical results reveal the influence of the presence of liquid droplets on the airflow by comparing single-phase flow field to the air-phase motion in two-phase flow configuration. Furthermore, by analysing the continuous-phase and the discrete-phase properties, some aspects of the interaction between the two phases are shown.  相似文献   

7.
为探究煤油液滴不同初始直径对气液两相旋转爆轰发动机流场的影响,假设初始注入的煤油液滴具有均匀直径,考虑雾化破碎、蒸发等过程,建立了非定常两相爆轰的Eulerian-Lagrangian模型,进行了液态煤油/高温空气爆轰的非预混二维数值模拟。结果表明:在初始液滴直径为1~70μm的工况范围,燃烧室内均形成了单个稳定传播的旋转爆轰波;全局当量比为1时,爆轰波前的空气区域大于液滴煤油的蒸气区域,导致波前燃料空气混合不均匀,波前均存在富油区和贫油区,两相速度差导致分离出的空气形成低温条带;当煤油液滴的初始直径较小时,波前的反应物混合过程主要受蒸发的影响,爆轰波可稳定传播;当直径减小至1μm时,煤油液滴在入口处即蒸发,旋转爆轰波表现为气相传播的特性,爆轰波结构平整;当煤油液滴的初始直径较大时,波前的反应物混合过程主要受液滴破碎的影响;对于相同的燃料质量流量,在不同初始煤油液滴直径工况下,煤油液滴最大的停留时间均占爆轰波传播时间尺度的80%以上;爆轰波前燃料预蒸发为气相的占比越高,爆轰波的传播速度越高;初始液滴直径为10~70μm的工况范围内,爆轰波的速度随初始直径的增大先升高后降低。  相似文献   

8.
A complementary experimental and computational study of the flow and mixing in a single annular gas turbine combustor has been carried out. The object of the investigation is a generic mixing chamber model, representing an unfolded segment of a simplified Rich-Quick-Lean (RQL) combustion chamber operating under isothermal, non-reacting conditions at ambient pressure. Two configurations without and with secondary air injection were considered. To provide an appropriate reference database several planar optical measurement techniques (time-resolved flow visualisation, PIV, QLS) were used. The PIV measurements have been performed providing profiles of all velocity and Reynolds-stress components at selected locations within the combustor. Application of a two-layer hybrid LES/RANS (HLR) method coupling a near-wall k − ε RANS model with conventional LES in the core flow was the focus of the computational work. In addition to the direct comparison with the experimental results, the HLR performance is comparatively assessed with the results obtained by using conventional LES using the same (coarser) grid as HLR and two eddy-viscosity-based RANS models. The HLR model reproduced all important flow features, in particular with regard to the penetrating behaviour of the secondary air jets, their interaction with the swirled main flow, swirl-induced free recirculation zone evolution and associated precessing-vortex core phenomenon in good agreement with experimental findings.  相似文献   

9.
A kilohertz frame rate cinemagraphic particle image velocimetry (PIV) system has been developed for acquiring time-resolved image sequences of laboratory-scale gas and liquid-phase turbulent flows. Up to 8000 instantaneous PIV images per second are obtained, with sequence lengths exceeding 4000 images. The two-frame cross-correlation method employed precludes directional ambiguity and has a higher signal-to-noise ratio than single-frame autocorrelation or cross-correlation methods, facilitating acquisition of long uninterrupted sequences of valid PIV images. Low and high velocities can be measured simultaneously with similar accuracy by adaptively cross-correlating images with the appropriate time delay. Seed particle illumination is provided by two frequency-doubled Nd:YAG lasers producing Q-switched pulses at the camera frame rate. PIV images are acquired using a 16 mm high-speed rotating prism camera. Frame-to-frame registration is accomplished by imaging two pairs of crossed lines onto each frame and aligning the digitized image sequence to these markers using image processing algorithms. No flow disturbance is created by the markers because only their image is projected to the PIV imaging plane, with the physical projection device residing outside the flow field. The frame-to-frame alignment uncertainty contributes 2% to the overall velocity measurement uncertainty, which is otherwise comparable to similar film-based PIV methods. Received: 11 July 2000 / Accepted: 21 June 2001 Published online: 29 November 2001  相似文献   

10.
Simultaneous two-phase PIV by two-parameter phase discrimination   总被引:6,自引:0,他引:6  
 A flexible and robust phase discrimination algorithm for two-phase PIV employs second-order intensity gradients to identify objects. Then, the objects are sorted into solids and tracers according to parametric combinations of size and brightness. Solids velocities are computed by tracking, gas velocities by cross-correlation. Tests in a fully-developed turbulent channel flow of air showed that the two phases do not contaminate or bias each other's velocity statistics. Error magnitude and valid data yield were quantified with artificial images for three particle sizes (25, 33, and 63 μm), two interrogation area sizes (32 and 64 pixels), and volumetric solids loads from 0.0022% to 0.014%. At the channel centerline, the gas valid data yield was above 98% and the RMS error in gas velocity was less than 0.1 pixels for all variations of these parameters. The solid-to-tracer signal ratio was found to be the major parameter affecting the magnitude of the RMS error. Received: 20 September 2000/Accepted: 2 July 2001 Published online: 29 November 2001  相似文献   

11.
 This paper describes how the accuracy for estimating the location of the displacement-correlation peak in (digital) particle image velocimetry (PIV) can be optimized by the use of a window offset equal to the integer-pixel displacement. The method works for both cross-correlation analysis of single-exposure image pairs and multiple-exposure images. The effect is predicted by an analytical model for the statistical properties of estimators for the displacement, and it is observed in the analysis of synthetic PIV images of isotropic turbulence, and in actual measurements of grid-generated turbulence and of fully-developed turbulent pipe flow. Received: 29 April 1996/Accepted: 29 October 1996  相似文献   

12.
We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability (the impulsively driven Rayleigh-Taylor instability) (Meshkov 1969; Richtmyer 1960). In our experiment, a vertical curtain of heavy gas (SF6) flows into the test section of an air-filled, horizontal shock tube. The instability evolves after a Mach 1.2 shock passes through the curtain. For visualization, we pre-mix the SF6 with a small (∼10−5) volume fraction of sub-micron-sized glycol/water droplets. A horizontal section of the flow is illuminated by a light sheet produced by a combination of a customized, burst-mode Nd:YAG laser and a commercial pulsed laser. Three CCD cameras are employed in visualization. The “dynamic imaging camera” images the entire test section, but does not detect the individual droplets. It produces a sequence of instantaneous images of local droplet concentration, which in the post-shock flow is proportional to density. The gas curtain is convected out of the test section about 1 ms after the shock passes through the curtain. A second camera images the initial conditions with high resolution, since the initial conditions vary from test to test. The third camera, “PIV camera,” has a spatial resolution sufficient to detect the individual droplets in the light sheet. Images from this camera are interrogated using Particle Image Velocimetry (PIV) to recover instantaneous snapshots of the velocity field in a small (19 × 14 mm) field of view. The fidelity of the flow-seeding technique for density-field acquisition and the reliability of the PIV technique are both quantified in this paper. In combination with wide-field density data, PIV measurements give us additional physical insight into the evolution of the Richtmyer-Meshkov instability in a problem which serves as an excellent test case for general transition-to-turbulence studies. Received: 26 June 1999/Accepted: 29 October 1999  相似文献   

13.
Particle image velocimetry with local field correction (LFC PIV) has been tested in the past to obtain two components of velocity in a two dimensional domain (2D2C). When compared to conventional correlation based algorithms, this advanced technique has shown improvements in three important aspects: robustness, resolution and ability to cope with large displacements gradients. A further step in the development of PIV algorithms consists in the combination of LFC with the stereo technique, which is able to obtain three components of velocity in a plane (2D3C PIV). In this work this combination is implemented and its performance is evaluated carrying out the following two different tasks:
–  Comparison of robustness and accuracy for large and small scale flow structures. This is carried out using three techniques: the conventional Stereo PIV, the Stereo-LFC PIV and the Stereo-Multigrid PIV enhanced with image distortion.
–  Insight on the limit of resolvable scales for the Stereo-LFC. This task is relevant because the resolution attainable by this combination is higher than what has been obtained by the rest of the herein used algorithms.
The first task has been achieved using synthetic images. Afterwards the coherence of the results has been checked with real images. The results show improvement of Stereo-LFC PIV in respect to Stereo-Multigrid PIV enhanced with image distortion. The performance of Stereo-LFC when only large scales are involved shows an increase of the dynamic range of measurable vorticity. When small scales are analysed, the magnitude of the error resulting when using Stereo-LFC is about half of the one obtained for the Stereo-Multigrid measurements. Results with errors below 20% have been achieved for some of the cases with peak vorticities as large as 1.8 Δt −1 (in the absence of out-of-plane displacements), out-of-plane loss of particle pairs of 65% (with a low peak vorticity of 0.06 Δt −1) and peak vorticities as large as 1.5 Δt −1 with 50% particle pair loss. For the second task most of the information has been obtained using real images. It has been found that the resolution limit is very dependent on the robustness of the algorithms against image defects and variability. The results show a remarkable improvement when using the Stereo-LFC PIV processing, although a full quantification and characterization would need further study because of the variety of noise sources possible in a real image.  相似文献   

14.
A phase discrimination method for two-phase PIV is presented that is capable of simultaneously separating the two phases from time-resolved stereoscopic PIV images taken in a particle-laden jet. The technique developed expands on previous work done by Khalitov and Longmire (Exp Fluids 32:252–268, 2002), where by means of image processing techniques, a raw two-phase PIV image can be separated into two single-phase images according to particle size and intensity distributions. The technique is expanded through the use of three new image processing algorithms to separate particles of similar size (up to an order of magnitude better than published work) for fields of view much larger than previously considered. It also addresses the known problem of noisy background images produced by high-speed CMOS cameras, which makes the particle detection and separation from the noisy background difficult, through the use of a novel fast Fourier transform background filter.  相似文献   

15.
This paper details the use of magnified digital in-line holography (MDIH) and digital particle image velocimetry (DPIV) to measure the evaporation rates of fuel micro-droplets undergoing heating. The technique can be used to measure instantaneous evaporation along an individual droplet trajectory, or if applied to a series of droplets, the average evaporation over a number of successive measurement locations. The advantage of this technique over traditional optical techniques is greater spatial resolution and depth of field for the high magnification factors used. An application of the technique to the evaporation measurement of diesel fuel droplets ranging from 10 to 90 μm is presented. Results reveal that similar to larger droplets, temperature plays the dominant role in evaporation processes, with little sensitivity to initial droplet size found for a peak reactor temperature of 660 K.  相似文献   

16.
An investigation of dispersed liquid–liquid two-phase turbulent swirling flow in a horizontal pipe is conducted using a particle tracking velocimetry (PTV) technique and a shadow image technique (SIT). Silicone oil with a low specific gravity is used as immiscible droplets. A swirling motion is given to the main flow by an impeller installed in the pipe. Fluorescent tracer particles are applied to flow visualization. Red/green/blue components extracted from color images taken with a digital color CCD camera are used to simultaneously estimate the liquid and droplet velocity vectors. Under a relatively low swirl motion, a large number of droplets with low specific gravity tend to accumulate in the central region of the pipe. With increasing droplet volume fraction, the liquid turbulence intensity in the axial direction increases while that in the wall-normal direction decreases in the central region of the pipe. In addition, the turbulence modification in the present flow is strongly dependent on the droplet Reynolds number; however, the interaction of droplet-induced turbulences is significant due to vortex shedding, particularly at high droplet Reynolds numbers and higher droplet volume fraction.  相似文献   

17.
Second-order accurate particle image velocimetry   总被引:1,自引:0,他引:1  
 An adaptive, second-order accurate particle image velocimetry (PIV) technique is presented. The technique uses two singly exposed images that are interrogated using a modified cross-correlation algorithm. Consequently, any of the equipment commonly available for conventional PIV (such as dual head Nd: YAG lasers, interline transfer CCD cameras, etc.) can be used with this more accurate algorithm. At the heart of the algorithm is a central difference approximation to the flow velocity (accurate to order Δt 2) versus the forward difference approximation (accurate to order Δt) common in PIV. An adaptive interrogation region-shifting algorithm is used to implement the central difference approximation. Adaptive shifting algorithms have been gaining popularity in recent years because they allow the spatial resolution of the PIV technique to be maximized. Adaptive shifting algorithms also have the virtue of helping to eliminate velocity bias errors. The second- order accuracy resulting from the central difference approximation can be obtained with relatively little additional computational effort compared to that required for a standard first-order accurate forward difference approximation. The adaptive central difference interrogation (CDI) algorithm has two main advantages over adaptive forward difference interrogation (FDI) algorithms: it is more accurate, especially at large time delays between camera exposures; and it provides a temporally symmetric view of the flow. By comparing measurements of flow around a single red blood cell made using both algorithms, the CDI technique is shown to perform better than conventional FDI-PIV interrogation algorithms near flow boundaries. Cylindrical Taylor–Couette flow images, both experimental and simulated, are used to demonstrate that the CDI algorithm is significantly more accurate than conventional PIV algorithms, especially as the time delay between exposures is increased. The results of the interrogations are shown to agree quite well with analytical predictions and confirm that the CDI algorithm is indeed second-order accurate while the conventional FDI algorithm is only first-order accurate. Received: 15 June 2000/Accepted: 2 February 2001  相似文献   

18.
When a binary fluid demixes under a slow temperature ramp, nucleation, coarsening and sedimentation of droplets lead to an oscillatory evolution of the phase-separating system. The advection of the sedimenting droplets is found to be chaotic. The flow is driven by density differences between two phases. Here, we show how image processing can be combined with particle tracking to resolve droplet size and velocity simultaneously. Droplets are used as tracer particles, and the sedimentation velocity is determined. Taking these effects into account, droplets with radii in the range of 4−40 μm are detected and tracked. Based on these data, we resolve the oscillations in the droplet size distribution that are coupled to the convective flow.  相似文献   

19.
A two-phase velocity-scalar filtered mass density function (TVSFMDF) formulation developed for large eddy simulation (LES) is applied to a temporally developing counter-current mixing layer seeded with water droplets. Closure models for both the dispersed and carrier phases are developed and implemented that are self-consistent with the original TVSFMDF mathematical formulation developed by Carrara and DesJardin. Several simulation cases are conducted to examine the sensitivity of both evaporating and non-evaporating droplet dispersion on various levels of subgrid scale (SGS) modeling approximation – highlighting the importance of variations in composition space in the phase-coupling terms.  相似文献   

20.
 Temperatures, velocities, and droplet sizes are measured in turbulent condensing steam jets produced by a facial sauna, for varying nozzle diameters and varying initial velocities (Re=3,600–9,200). The release of latent heat due to droplet condensation causes the temperature in the two-phase jet to be significantly higher than in a single-phase jet. At some distance from the nozzle, droplets reach a maximum size and start to evaporate again, which results in a change in sign of latent heat release. The distance of maximum size is determined from droplet size measurements. The experimental results are compared with semi-analytical expressions and with a fully coupled numerical model of the turbulent condensing steam jet. The increase in centreline temperature due to droplet condensation is successfully predicted. Received: 5 April 2000 / Accepted: 15 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号