首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Eslicarbazepine acetate (BIA 2-093) is a novel central nervous system drug undergoing clinical phase III trials for epilepsy and phase II trials for bipolar disorder. A simple and reliable chiral reversed-phase HPLC-UV method was developed and validated for the simultaneous determination of eslicarbazepine acetate, oxcarbazepine, S-licarbazepine and R-licarbazepine in human plasma. The analytes and internal standard were extracted from plasma by a solid-phase extraction using Waters Oasis HLB cartridges. Chromatographic separation was achieved by isocratic elution with water-methanol (88:12, v/v), at a flow rate of 0.7 mL/min, on a LichroCART 250-4 ChiraDex (beta-cyclodextrin, 5 microm) column at 30 degrees C. All compounds were detected at 225 nm. Calibration curves were linear over the range 0.4-8 microg/mL for eslicarbazepine acetate and oxcarbazepine, and 0.4-80 microg/mL for each licarbazepine enantiomer. The overall intra- and interday precision and accuracy did not exceed 15%. Mean relative recoveries varied from 94.00 to 102.23% and the limit of quantification of the assay was 0.4 microg/mL for all compounds. This method seems to be a useful tool for clinical research and therapeutic drug monitoring of eslicarbazepine acetate and its metabolites S-licarbazepine, R-licarbazepine and oxcarbazepine.  相似文献   

2.
Opicapone is a novel potent, reversible and purely peripheral third generation catechol‐O‐methyltransferase inhibitor, currently under clinical trials as an adjunct to levodopa therapy for Parkinson's disease. To support additional nonclinical pharmacokinetic studies, a novel high‐performance liquid chromatographic method coupled to a diode array detector (HPLC‐DAD) to quantify opicapone and its active metabolite (BIA 9–1079) in rat plasma and tissues (liver and kidney) is herein reported. The analytes were extracted from rat samples through a deproteinization followed by liquid‐liquid extraction. Chromatographic separation was achieved in less than 10 min on a reversed‐phase C18 column, applying a gradient elution program with 0.05 M monosodium phosphate solution (pH 2.45 ± 0.05) and acetonitrile. Calibration curves were linear (r2 ≥ 0.994) within the ranges of 0.04‐6.0 µg/mL for both analytes in plasma, 0.04‐4.0 µg/mL for opicapone in liver and kidney homogenates, and 0.07‐4.0 µg/mL and 0.06‐4.0 µg/mL for BIA 9–1079 in liver and kidney homogenates, respectively. The overall intra‐ and inter‐day accuracy ranged from ?12.68% to 7.70% and the imprecision values did not exceed 11.95%. This new HPLC‐DAD assay was also successfully applied to quantify opicapone and BIA 9–1079 in a preliminary pharmacokinetic study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
For the first time, a simple, selective and accurate high-performance liquid chromatography method with ultraviolet detection was developed and validated to quantify simultaneously three structurally related antiepileptic drugs; carbamazepine, oxcarbazepine, and the recently launched eslicarbazepine acetate and their main metabolites, carbamazepine-10,11-epoxide, 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and licarbazepine. The method involves a solid-phase extraction and a reverse-phase C18 column with 5 cm length. The mobile phase consisting of water, methanol, and acetonitrile in the ratio 64:30:6 was selected as the best one and pumped at 1 mL/min at 40 °C. The use of this recent column and an aqueous mobile phase instead of buffers gives several advantages over the method herein developed; namely the fact that the chromatographic analysis takes only 9 min. The method was validated according to the guidelines of the Food and Drug Administration, showing to be accurate (bias within ±12%), precise (coefficient variation <9%), selective and linear (r 2 > 0.997) over the concentration range of 0.05–30 μg/mL for carbamazepine; 0.05–20 μg/mL for oxcarbazepine; 0.15–4 μg/mL for eslicarbazepine acetate; 0.1–30 μg/mL for carbamazepine-10,11-epoxide; 0.1–10 μg/mL for 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and 0.1–60 μg/mL for licarbazepine. It was also shown that this method can adequately be used for the therapeutic drug monitoring of the considered antiepileptic drugs, carbamazepine, oxcarbazepine, eslicarazepine acetate, and their metabolites.  相似文献   

4.
Licarbazepine is the pharmacologically active metabolite of oxcarbazepine, a drug indicated for the treatment of partial seizures and bipolar disorders. Several HPLC methods have been developed thus far but there is lack of control for interferences from antipsychotic drugs. The aim of the present study was to develop a simple, low‐cost and reliable HPLC‐UV method for the determination of licarbazepine in human serum in the presence of co‐administered antiepileptic, antipsychotic and commonly prescribed drugs. Sample preparation consisted of a single protein precipitation step with methanol. Separation lasted ~9 min on a reversed‐phase C18 column using a mobile phase composed of 50 mm sodium‐dihydrogen‐phosphate‐monohydrate/acetonitrile (70:30, v/v) delivered isocratically at 0.9 mL/min and 30°C. Wavelength was 210 nm and calibration curve was linear with r 2 0.998 over the range 0.2–50.0 μg/mL. Coefficient of variation was <5.03% and bias <−4.92%. Recovery ranged from 99.49 to 104.52% and the limit of detection was 0.0182 μg/mL. No interferences from the matrix or from antiepileptic, antipsychotic and commonly prescribed drugs were observed. The method was applied to serum samples of patients under oxcarbazepine treatment and proved to be a useful tool for the therapeutic drug monitoring of licarbazepine during monotherapy or adjunctive treatment of seizures or affective disorders.  相似文献   

5.
A direct injection liquid chromatography–electrospray ionization–tandem mass spectrometric method (LC‐ESI‐MS/MS) was developed and validated for the rapid and simple determination of 13 phenylalkylamine derivatives. Eight deuterium‐labeled compounds were prepared for use as internal standards (ISs) to quantify the analytes. Urine samples mixed with ISs were centrifuged, filtered through 0.22 µm filters and then injected directly into the LC‐ESI‐MS/MS system. The mobile phase was composed of 0.2% formic acid and 2 mM ammonium formate in distilled water and 0.2% formic acid and 2 mM ammonium formate in acetonitrile. The analytical column was a Capcell Pak MG‐II C18 (150 × 2.0 mm i.d., 5 µm, Shiseido). Separation and detection of the analytes were accomplished within 10 min. The linear ranges were 5–750 ng/mL (ephedrine and fenfluramine), 10–750 ng/mL (3,4‐methylenedioxyamphetamine, phendimetrazine, methamphetamine, 3,4‐methylenedioxyethylamphetamine and benzphetamine), 20–750 ng/mL (norephedrine, amphetamine, phentermine and ketamine) and 30–1000 ng/mL (3,4‐methylenedioxymethamphetamine and norketamine), with determination coefficients, R2, ≥ 0.9967. The intra‐day and inter‐day precisions were within 19.1%. The intra‐day and inter‐day accuracies ranged from ?16.0 to 18.7%. The lower limits of quantification for all the analytes were lower than 26.5 ng/mL. The applicability of the method was examined by analyzing urine samples from drug abusers (n = 30). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Cefuroxime lysine is a new second‐generation cephalosporins, which can penetrate the blood–brain barrier to cure the meningitis. In order to investigate its acute toxicokinetic study after intraperitoneal injection of 675 mg/kg cefuroxime lysine, a sensitive and clean ultra‐fast liquid chromatography–tandem mass spectrometry (UFLC‐MS/MS) method for the determination of cefuroxime lysine in microdialysate samples was developed and validated, which was compared with UFLC‐UV as a reference method. Chromatographic separation was performed on a Shim‐pack XR‐ODS C18 column (75 × 3.0 mm, 2.2 µm), with an isocratic elution of 0.1% formic acid in acetonitrile–0.1% formic acid in water (45:55, v/v) for LC‐MS and acetonitrile–20 mm potassium dihydrogen phosphate (pH 3.0,20:80, v/v) for LC‐UV. The lower limit of detection was 0.01 µg/mL for LC‐MS and 0.1 µg/mL for LC‐UV method, with the same corresponding linearity range of 0.1–50 µg/mL. The intra‐ and inter‐day precisions (relative standard deviation) for both methods were from 1.1 to 8.9%, while the accuracy was all within ±10.9%. The results of both methods were finally compared using paired t‐test; the results indicated that the concentrations measured by the two methods correlated significantly (p < 0.05), which suggested that the two methods based on LC‐MS and LC‐UV were suitable for the acute toxicokinetic study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Caffeine has been extensively used as a probe to measure CYP1A2 activity in humans with caffeine clearance or the paraxanthine (major metabolite of caffeine) to caffeine concentration ratio being regarded as the preferred metric. A simple reverse‐phased C18 HPLC assay using ethyl acetate liquid–liquid extraction was developed to quantitate caffeine and paraxanthine concentrations in saliva and plasma. The mobile phase consisted of acetonitrile–acetic acid–H2O (100:1:899) and analytes were quantitated with UV detection at 280 nm. The extraction recovery for paraxanthine and caffeine was approximately 70% in both saliva and plasma. The assay was linear over the concentration ranges 0.05–2.50 and 0.05–5.00 µg/mL, for paraxanthine and caffeine, respectively, in saliva. In plasma the assay was linear over the ranges 0.025–2.50 and 0.025–5.00 µg/mL for paraxanthine and caffeine, respectively. Intra‐ and inter‐assay precision and accuracy were less than 15%. Detection limits were 0.015 µg/mL for paraxanthine and caffeine in saliva, while it was 0.005 µg/mL for paraxanthine and caffeine in plasma. Utility was established in samples collected from two healthy volunteers who abstained from caffeine for 24 h and received a single 100 mg oral dose of caffeine. The assay developed is a robust, simple and precise technique to measure caffeine and paraxanthine in saliva and plasma of healthy volunteers after a single oral dose of caffeine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and efficient liquid chromatography‐mass spectrometry (LC‐MS) method was developed and validated for simultaneous quantitation of catalpol and harpagide in normal and diabetic rat plasma. Protein precipitation extraction with acetonitrile was carried out using salidroside as the internal standard (IS). The LC separation was performed on an Elite C18 column (150 × 4.6 mm, 5 µm) with the mobile phase consisting of acetonitrile and water within a runtime of 12.0 min. The analytes were detected without endogenous interference in the selected ion monitoring mode with positive electrospray ionization. Calibration curves offered satisfactory linearity (r > 0.99) at linear range of 0.05–50.0 µg/mL for catalpol and 0.025–5.0 µg/mL for harpagide with the lower limits of quantitation of 0.05 and 0.025 µg/mL, respectively. Intra‐ and inter‐day precisions (RSD) were <9.4%, and accuracy (RE) was in the ?6.6 to 4.9% range. The extraction efficiencies of catalpol, harpagide and IS were all >76.5% and the matrix effects of the analytes ranged from 86.5 to 106.0%. The method was successfully applied to the pharmacokinetic study of catalpol and harpagide after oral administration of Zeng‐Ye‐Decoction to normal and diabetic rats, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Three methods were developed and validated for determination of nemonoxacin in human feces and its major metabolite, nemonoxacin acyl‐β‐ d ‐glucuronide, in human urine and feces. Nemonoxacin was extracted by liquid–liquid extraction in feces homogenate samples and nemonoxacin acyl‐β‐ d ‐glucuronide by a solid‐phase extraction procedure for pretreatment of both urine and feces homogenate sample. Separation was performed on a C18 reversed‐phase column under isocratic elution with the mobile phase consisting of acetonitrile and 0.1% formic acid. Both analytes were determined by liquid chromatography–tandem mass spectrometry with positive electrospray ionization in selected reaction monitoring mode and gatifloxacin as the internal standard. The lower limit of quantitation (LLOQ) of nemonoxacin in feces was 0.12 µg/g and the calibration curve was linear in the concentration range of 0.12–48.00 µg/g. The LLOQ of the metabolite was 0.0010 µg/mL and 0.03 µg/g in urine and feces matrices, while the linear range was 0.0010–0.2000 µg/mL and 0.03–3.00 µg/g, respectively. Validation included selectivity, accuracy, precision, linearity, recovery, matrix effect, carryover, dilution integrity and stability, indicating that the methods can quantify the corresponding analytes with excellent reliability. The validated methods were successfully applied to an absolute bioavailability clinical study of nemonoxacin malate capsule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The study of pharmacokinetics of Ginkgo biloba extracts in Traditional Chinese Medicine was relatively recent. In this study, a simple, quick and sensitive LC‐MS/MS analytical method was developed for the determination of ginkgolides A, B, C and bilobalide in rat plasma. The analytes were completely separated from the endogenous compounds on an Agilent Zorbax Eclipse plus C18 column (50 mm × 3.0 mm, 1.8 µm) using an isocratic elution. The single‐run analysis time was as short as 5.0 min. Sample preparation for protein removal was accomplished used a simple methanol precipitation method, after SPE showing a simultaneous extraction and cleanup of extracts allowing for a direct analysis. Extraction recoveries in rat plasma for ginkgolides A, B, C and bilobalide ranged from 75.6% to 89.0%. The calibration curves were determined over the ranges 0.5–20,000 ng/mL for ginkgolides A, B, C and bilobalide respectively. The lower limits of quantification (LLOQ) of the analytes were 0.5 ng/mL. Inter‐day and intra‐day precision and accuracy were below 15% and between 85 and 115%, respectively. Finally, the developed method was successfully applied to a pharmacokinetic study following oral administration of the Ginkgo biloba extracts to the male ICR rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Verproside, isovanilloylcatalpol, catalposide and 6‐O‐veratroyl catalpol are bioactive iridoid glucosides isolated from in a number of folk medicinal plants. A rapid, sensitive and selective liquid chromatography/mass spectrometric (LC/MS) method for the simultaneous determination of verproside, isovanilloylcatalpol, catalposide and 6‐O‐veratroyl catalpol in rat plasma was developed. The analytes were extracted from 50 µL of rat plasma with ethyl acetate using 7‐carboxymethyloxy‐3',4',5‐trimethoxyflavone as internal standard and analyzed on an X‐Bridge C18 column within 6.5 min with 40% methanol in 10 mm ammonium formate (pH 3.0). The analytes were quantified using an electrospray ionization mass spectrometry in the selected ion monitoring mode. The standard curves were linear over the concentration ranges of 10–2000 ng/mL for verproside, isovanilloylcatalpol and catalposide and 20–2000 ng/mL for 6‐O‐veratroyl catalpol. The coefficients of variation and relative errors of verproside, isovanilloylcatalpol, catalposide and 6‐O‐veratroyl catalpol for intra‐ and inter‐assay at four quality control levels were 2.5–8.0 and–4.0–6.6%, respectively. This method was successfully applied to the pharmacokinetic study of verproside and its possible metabolite isovanilloylcatalpol after intravenous administration of verproside, a candidate anti‐asthma drug, in male Sprague–Dawley rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of the present study was to develop a simple, selective and reliable method to quantify acetaminophen and its toxic metabolite N‐acetyl‐p‐benzoquinoneimine (NAPQI) for pediatric studies using 100 µL plasma samples, by reverse‐phase HPLC and UV detection. The assay was performed using a C18 column and an isocratic elution with water–methanol–formic acid (70:30:0.15; v/v/v) as mobile phase. Linearity of the method was assayed in the range of 1–30 µg/mL for acetaminophen and 10–200 µg/mL for NAPQI, with a correlation coefficient r = 0.999 for both compounds, and inter‐ and intra‐day coefficients of variation of less than 13%. Several commonly co‐administered drugs were analyzed for selectivity and no interference with the determinations was observed. The detection and quantification limits for acetaminophen and NAPQI were 0.1 and 1 µg/mL, and 0.1 and 10 µg/mL respectively. The present method can be used to monitor acetaminophen levels using 100 µL plasma samples, which may be helpful when very small samples need to be analyzed, as in pharmacokinetics determination or drug monitoring in plasma in children. This assay is also able to detect the NAPQI for drug monitoring in patients diagnosed with acetaminophen intoxication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and fast liquid chromatographic method coupled with fluorescence detection (LC‐FD) is reported, for the first time, for the simultaneous quantification of norfloxacin (NOR), ciprofloxacin (CIP) and lomefloxacin (LOM) in human plasma, using levofloxacin as internal standard (IS). Sample preparation consists of a single‐step precipitation of plasma proteins followed by vortex‐mixing and centrifugation. Chromatographic separation was achieved within 7 min on a reversed‐phase C18 column with a mobile phase consisting of 0.1% aqueous formic acid (pH = 3.0, triethylamine)–methanol (82:18, v/v) pumped isocratically at 1.2 mL/min. The detector was set at excitation/emission wavelengths of 278/450 nm. Calibration curves were linear (r2 ≥ 0.994) in the range of 0.02–5.0 µg/mL, and the limit of quantification was established at 0.02 µg/mL for all analytes (NOR, CIP and LOM). The overall precision did not exceed 8.19% and accuracy was within ±10.91%. NOR, CIP and LOM were extracted from human plasma with an overall mean recovery ranged from 90.1 to 111.5%. No interferences were observed at the retention times of the analytes and IS. This novel LC‐FD method enables the reliable determination of NOR, CIP and LOM in a single chromatographic run, which may be suitable to support human pharmacokinetic‐based studies with those antimicrobial agents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A series of novel 3,5‐dichloro‐4‐(1,1,2,2‐tetrafluoroethoxy)phenyl containing 4‐methyl‐1,2,3‐thiadiazole derivatives were designed and synthesized via Ugi reaction. Their structures were confirmed by IR, 1H NMR, 13C NMR and high‐resolution mass spectroscopy. The preliminary bioassay results indicated that some title compounds had good fungicide activity at 50 µg/mL; most of the compounds presented a certain degree of direct inhibition activity, good inactivation and curative activity against tobacco mosaic virus at 500 µg/mL and 100 µg/mL; some compounds showed good larvicidal activity against Plutella xylostella L. at 200 µg/mL and excellent larvicidal activities against Culex pipiens pallens at 2 µg/mL.  相似文献   

15.
A novel UPLC‐DAD method was developed and validated for the simultaneous determination of baicalin (baicalein‐7‐glucuronide, BG), oroxylin A‐7‐O‐glucuronide (OAG) and wogonoside (WG) in rat plasma using rutin as the internal standard. Plasma samples were precipitated using acetonitrile containing 0.1% formic acid. Separation was performed on an Agilent Eclipse Plus C18 column (2.1 × 50 mm, 1.8 µm) using gradient acetonitrile and 0.2% formic acid water solution as mobile phase. The flow‐rate was set at 0.4 mL/min and the eluate was detected at 275 nm. The method was linear over the ranges of 0.075–17.50, 0.050–12.60 and 0.056–14.10 µg/mL for BG, OAG and WG, respectively. The intra‐ and inter‐day precisions were respectively <4.8% and 6.4%. All of the limits of detection of three analytes in rat plasma were 0.01 µg/mL, whereas the limits of quantification were, respectively, 0.035, 0.025 and, 0.025 µg/mL. This assay has been successfully applied to pharmacokinetics of BG, OAG and WG in rats after oral administration of Yinhuang granule (YHG) and comparative pharmacokinetics of BG in rats following oral administration of the pure BG, Radix Scutellariae (RS) or YHG. We speculate that some co‐existing ingredients in RS or YHG may increase the absorption and elimination of BG in rat. This work may be helpful for the quality control of Yinhuang granule. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Therapeutic drug monitoring (TDM) of anti‐epileptic drugs (AED) is a routine application. Carbamazepine (CRB) is monitored as the parent drug while oxcarbazepine (OXC) and eslicarbazepine acetate (ESL) are monitored as their active metabolite (eslicarbazepine; MHD). We have developed a UPLC‐MS/MS method for determining CRB, OXC, ESL and MHD in plasma or serum with a simplified extraction protocol. The developed method detects sildenafil (SLD), which clinically interferes with AED and is likely to be co‐administered in epileptic patients suffering from sexual insufficiency (60%). MHD was prepared in‐house. AED were simultaneously determined in presence of SLD using gatifloxacin as an internal standard (IS). Separation was achieved using acetonitrile, methanol and 100 mm ammonium acetate in water (32:3:65, v /v/v) on an Intersil®RP‐HPLC column (250 × 4.6 mm, 5 μm). A one‐step extraction was performed by simultaneous protein and phospholipids precipitation. Detection was done by tandem mass spectrometry. No relative matrix effect was observed. The method was linear (0.5–40 μg/mL for CRB, ESL and MHD and 0.05–4 μg/mL for OXC), accurate and selective. Recoveries were 64.41 ± 5.07, 45.62 ± 1.73, 61.41 ± 4.77 and 60.33 ± 1.36 for CRB, OXC, ESL and MHD, respectively. The method was successfully applied for TDM of AED.  相似文献   

17.
A rapid, simple, sensitive, gradient and reproducible, reverse‐phase high‐performance liquid chromatographic method was developed for the quantitative estimation of bioactive alkaloids, lysergol and chanoclavine in the seeds of Ipomoea muricata. The clavine alkaloid, lysergol, is a bioenhancer for the drugs and nutrients. The samples were analyzed by reverse‐phase chromatography on a Waters spherisorb ODS2 column (250 × 4.6 mm, i.d., 10 µm) using binary gradient elution with acetonitrile and 0.01 m phosphate buffer (NaH2PO4) containing 0.1% glacial acetic acid at a flow rate of 0.8 mL/min, a column temperature of 25 °C and UV detection at λ 254 nm. The limits of detection (LOD) and quantitation (LOQ) were 0.035 and 0.106 µg/mL for lysergol and 0.039 and 0.118 µg/mL for chanoclavine, respectively. Standard curves were linear in the range of 2–10 µg/mL (r > 99) for both analytes. Good results were achieved with respect to repeatability (RSD < 2%) and recovery (99.20–102.0). The method was validated for linearity, accuracy repeatability, LOQ and LOD. The method is simple, accurate and precise, and may be recommended for routine quality control analysis of I. muricata seed extracts containing these two clavine alkaloids (1, 2) as bioactive principles of the herb. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, rapid, selective and sensitive HPLC‐UV method has been developed and validated for the determination of ponicidin in rat plasma. The analyte was extracted from rat plasma by liquid–liquid extraction with ethyl acetate as the extraction solvent. The LC separation was performed on a Zorbax Eclipse XDB C18 analytical column (150 × 4.6 mm i.d., 5 µm) with an isocratic mobile phase consisting of methanol–water–phosphoric acid (45:55:0.01, v/v/v) at a flow rate of 1.0 mL/min. There was a good linearity over the range of 0.1–25 µg/mL (r = 0.9995) with a weighted (1/C2) least square method. The lower limit of quantification was proved to be 0.1 µg/mL. The accuracy was within ±10.0% in terms of relative error and the intra‐ and inter‐day precisions were less than 9.1% in terms of relative standard deviation. After validation, the method was successfully applied to characterize the pharmacokinetics of ponicidin in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A series of novel 2‐substituted methlthio‐5‐(4‐amino‐2‐methylpyrimidin‐5‐yl‐)‐1,3,4‐thiadiazole derivatives were synthesized, characterized and evaluated for antiviral activities against tobacco mosaic virus (TMV). The preliminary biological results indicated that most compounds exhibit excellent antiviral activity against TMV in vivo. Among these compounds, compounds 9c , 9i , and 9p displayed the similar curative effect against TMV (EC50 = 287.05–322.47 µg/mL) to that of the commercial agent Ningnanmycin (EC50 = 301.83 µg/mL). In particular, compound 9d demonstrated the best curative effect against TMV (EC50 = 266.21 µg/mL), which was better than that of commercial Ningnanmycin.  相似文献   

20.
A fast and accurate liquid chromatography/tandem mass spectrometric (LC‐MS/MS) assay was first developed and validated for the determination of deferiprone in human plasma. The analytes were extracted with acetonitrile from only 50 μL aliquots of human plasma to achieve the protein precipitation. After extraction, chromatographic separation of analytes in human plasma was performed using a Synergi Fusion‐RP 80A column at 30 °C. The mobile phase consisted of methanol and 0.2% formic acid containing 0.2 mM EDTA (60:40, v/v). The flow rate of the mobile phase was 0.8 mL/min. The total run time for each sample analysis was 4 min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor‐to‐parent ion transitions m/z 140.1 → 53.1 for deferiprone and m/z 143.1 → 98.1 for internal standard. A linear range was established from 0.1 to 20 µg/mL. The limit of detection was determined as 0.05 µg/mL. The validated method was estimated for linearity, recovery, stability, precision and accuracy. Intraday and interday precisions were 4.3–5.5 and 4.6–7.3%, respectively. The recovery of deferiprone was in the range of 80.1–86.8%. The method was successfully applied to a pharmacokinetic study of deferiprone in six thalassemia patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号