首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract— Upon e--pulse irradiation in nonprotic solvents, all- trans retinol (ROH) and retinylmethyl ether (ROMe) form transient species (τ= 0.5–7μs, λmax=575–590 nm) identifiable as radical anions. Similar species are also formed upon laser pulse photoexcitation of these retinyl derivatives in the presence of N,N-dimethylaniline in acetonitrile. In contrast, electron transfer or attachment to all- trans retinyl acetate (ROAc) and palmitate (ROPa) results in 'instantaneous' loss of carboxylate anions from electron adducts giving the retinylmethyl radical (R-, λmax= 395 nm, τk > 100 μ,s); the radical anions in these cases are too short-lived to be detected by nanosecond pulse radiolysis. The lifetimes of radical anions of ROH and ROMe are very sensitive to water and alcohols (e.g. kq = 107 M -1 s-1 with methanol as quencher for ROH- in tetrahydrofuran). Based on these findings, the spectral dissimilarity of the one-electron reduction products from ROH and ROAc in alcohols and aqueous micelles becomes explainable in terms of fast formation of protonated radical anions (RH(OH), τ1/2, > 100 μs, λmax=370–375 nm) in the case of ROH and of retinylmethyl radical via loss of AcO- from radical anion in the case of ROAc. In tetrahydrofuran, the complexation of ROH- with cations such as Na+ and Bu4N+ affects the relative importance of its major decay modes, namely, protonation and dehydroxylation, the latter process being significantly enhanced by the presence of Na+.  相似文献   

2.
Abstract— The photoreaction cycle of 13- cis -bacteriorhodopsin (13- cis -bR) was investigated by low temperature spectrophotometry using two different preparations; 13- cis -bR constituted from bacterioopsin and 13- cis -retinal, and dark-adapted bacteriorhodopsin (bRD), which is an equi-molar mixture of 13- cis -bR and trans -bR.
By irradiation with 500 nm light at — 190°C, 13- cis -bR was converted to its batho-product, batho-13- cis -bR (batho-bR13), which is different from batho-product from trans -bR, batho-bRt. On warming batho-bR13 to -5°C in the dark, it completely changed to trans -bR. We estimated the composition of 13- cis -bR and trans -bR in the warmed sample spectrophotometrically and then the absorption spectrum of batho-bR13 was calculated. The absorption maximum lies at 608 nm, 1250 cm−1 longer than that of 13- cis -bR; the molar extinction coefficient (ε) is about 74000 M −1 cm−1, larger than that of 13- cis -bR (52000 M −1 cm−1).
On the warming the sample containing batho-bR13 formed by irradiating 13- cis -bR or bRD at — 190°C, we could not detect other intermediates such as the lumi- or meta-intermediates seen in trans-bR system.  相似文献   

3.
Abstract —The triplet states of the n -butyl-amine Schiff bases of 11- cis , 9- cis , 13- cis and all- trans retinal are produced via triplet-triplet energy transfer. Their absorption spectra, peaking around 435 nm, and their decay kinetics are recorded using pulsed-laser photolysis. Direct-excitation (φDISO) and triplet-sensitized (φTISO) photoisomerization yields, determined using steady irradiation methods, are found to be: φTISO (9- cis ) = 0.06, φTISO (11- cis ) = 045, φTISO (13- cis ) = 008, φTISO (all- trans ) = 0.02-0.05, φDISO (11- cis , = (4 ± 1) × 10-3, φDISO (all- trans ) = (2 ± 1) × 10-3. The possible role of the triplet state in the isomerization of rhodospin is discussed.  相似文献   

4.
Abstract— The radical cations and anions of diphenylhexatriene have been produced and characterized in homogenous and micellar solutions by pulse radiolysis and laser flash photolysis techniques. Both types of radical ions were formed in cyclohexane on pulse radiolysis. The radical cation was formed in dichloroethane on pulse radiolysis, and by two photon photoionization in ethanol, dichloroethane, and various micelles. Both radical ions have intense ( 105 M -1 cm-1) absorption peaks at600–650nm. The cation peak occurs at slightly shorter wavelengths than that of the anion.
In micelles and vesicles the radical anion of carotene was formed by electron transfer from ea– on pulse radiolysis. The radical cation was formed on pulse radiolysis of micellar solutions containing Br-2 as counterion, presumably by electron transfer to Br2-. The spectra agree with those of the radical cation and anion of carotene that have previously been obtained in homogenous solutions (Dawe and Land, 1975).
Electron transfer in micelles and vesicles from the radical anion of biphenyl to carotene and diphenylhexatriene, and from the radical anions of these to inorganic acceptors has been studied.  相似文献   

5.
Abstract The polarized UV-absorption spectra of all- trans retinal and both crystal forms of 11- cis , 12-s- cis retinal (presented in the previous paper, Part I) are analyzed using Lowry-Hudson functions to describe the band profiles. The polarization ratios of the polarized bands is used to determine the direction of the corresponding transition moments. For all- trans retinal the polarization spectra show that the absorption between 23 and 36 X 103 cm−1 is caused by three overlapping bands labeled S, A and B. For 11- cis retinal the B-band is also clearly resolved whereas the S and A bands are separated with much less certainty than for all- trans retinal.
Comparing these bands with the excited state manifold resulting from semiempirical CI-calculations including double excitations, the S-band could be assigned to the 1Ag1Ag-* and the A-band to the 1Ag1Bu+* transition. However, no transition is found in this manifold which could positively be assigned to the B-band because the transitions predicted in this spectral region have negligible oscillator strengths. In all the crystal spectra a further band C is observed around 39 X 103 cm−1 which is particularly pronounced in the case of 11- cis retinal. For this band an assignment to the 1Ag1Ag+*-transition is proposed.  相似文献   

6.
Abstract Crystals of all- trans retinal and both different forms of 11- cis , 12-s- cis retinal were grown on quartz slides with faces (101), (001) and (101), respectively, forming thin platelets of less than 0.2 μm thickness. Polarized UV absorption spectra at room temperature were measured in the range from 20 to 43 × 103 cm−1 with a microscope-spectrophotometer. In this spectral range three diffuse absorption bands were observed for all crystal types at similar wave numbers. A main absorption band was found at 25–28 × 103 cm−1, and two further bands at 32–34 and 38–40 × 103 cm−1. In case of all- trans retinal the latter band is by far the weakest in this spectral range. Additionally, the crystal spectrum of all- trans retinal shows a shoulder at the low wavenumber side of the main band which cannot be resolved in the corresponding solution spectrum. In the crystal spectra of 11- cis , 12-s- cis retinal, however, only a strong dissymmetry is observed at this side of the main band.  相似文献   

7.
Abstract Polarized absorption spectra of very thin crystal platelets of all- trans . retinal and both forms of 11- cis ., 12-s- cis . retinal were measured at liquid Helium temperature. Even at 4.2 K the spectra remain vibronically unresolved. They show, however, a distinct shoulder at 23.9 kK for all- trans . and at 22.7 kK for 11- cis ., 12-s- cis . retinal on the low energy side of the main band. An assignment of this transition to the lowest-lying ππ*-state 1Ag-* is proposed.  相似文献   

8.
Abstract— In bidistilled water, 4-thiouridine (4TU) exhibits a weak unusual luminescence, the quantum yield of which is 3 × 10-4 at 25°C. The excitation spectrum corresponds well to the 4TU absorption spectrum. The emission lies at longer wavelengths (Λmax 550 nm) than the 4TU phosphorescence observed at 77 K (Λmax, 470–480 nm). From the emission signal obtained after an excitation flash of 3 ns half-width, an "apparent" rate constant for the radiative deactivation process, shorter than 5 × 106 s, can be inferred. The 300 K emission is efficiently quenched by halides and by oxygen: quenching involves a long-lived intermediate (⋍ 200 ns).
Clearly the emissive state X is populated through the S0-S1 electronic transition π→π* of 4TU. The nature of X cannot be unambiguously determined: it cannot be an excimer but can be either the 4TU triplet state or another chemical state distinct from the 4TU excited singlet or triplet states.
An interesting finding is that the 300 K emission and the ability of 4TU to photoreact are related: they are quenched with the same efficiency by halide anions. This indicates that quenching occurs at the same long-lived intermediate species , which is either a precursor of the emitter or the emitter itself.  相似文献   

9.
FLUORESCENCE OF THYMINE IN AQUEOUS SOLUTION AT 300° K   总被引:1,自引:0,他引:1  
Abstract— –Fluorescence of thymine in neutral aqueous solution at room temperature has been detected using the multiscaling operation of a multichannel analyzer. The emission maximum (2.96 μm-1) and 0-0 transition energy (3.37-3.45 μm-1) are close to those determined at liquid nitrogen temperature in mixed solvents. The quantum efficiency of fluorescence excited at 3.77 μm-1 is calculated to be 1.04 × 10-4.
The corrected relative excitation spectrum shows significant differences from the absorption spectrum when both are determined under identical conditions of concentration and spectral bandwidth on the same instrument. The quantum yield of fluorescence decreases about 2-fold as the energy of excitation is increased beyond the 0-0' transition and follows the relation 1/φ°α E excit..
This behavior is discussed in terms of (a) n π* and ππ* states, (b) emission from a minor tautomer and (c) kinetics of competing deactivation processes.  相似文献   

10.
Abstract— Using high-intensity actinic light, the chlorophyll a fluorescence transient from HCO-3-depleted chloroplasts shows a rapid initial rise (O → I) followed by a slow phase (I → P). In the presence of HCO-3, the O → I rise is delayed but the I → P phase is much more rapid. Using low-intensity actinic light, the chlorophyll a fluorescence transient from 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU)-treated chloroplasts is delayed in the presence of HCO-3. Bicarbonate increases the amount of delayed light emission from chloroplasts given 10 s illumination with weak blue light (0·4 W/m2). DCMU greatly increases the amount of delayed light seen in the presence of HCO-3 under these conditions but decreases the amount seen in the absence of HCO-3. It is suggested that HCO-3 may somehow form or stabilize, in the dark, a number of reaction centers corresponding to the S1 state in the model of B. Forbush, B. Kok and M. McGloin ( Photochem. Photobiol. 14, 307–321, 1971).  相似文献   

11.
Abstract— The triplet absorption spectra, lifetimes, extinction coefficients, eTT, and intersystem crossing quantum yields to the lowest triplet T1, øT1, of thymidine, thymidine monophosphate, uridine and uridine monophosphate, have been determined in various solvents at 300 K.
The effect of H-bonding on øT1, of these nucleosides and nucleotides and also of uracil has been determined and discussed. This effect allows, an ordering of l,3 n, π* and 1,3 π, π* states in protic and aprotic solvents.  相似文献   

12.
Abstract— The radiolytic studies of oxyhemoglobin or methemoglobin in neutral aerated aqueous solutions with formate ions, lead to three conclusions:
The oxidation of oxyhemoglobin by O-2 is not important. The observed low oxidation yield is probably due to the slow reaction with hydrogen peroxide produced by O-2 disproportionation.
The reduction of methemoglobin in γ radiolysis reaches a plateau which could be explained by structural considerations.
The reduction of methemoglobin by O-2 ions, if it occurs, is relatively slow: k = 1.4 × 103 M -1 s-1. But a problem remains concerning the spectral characteristics of the product.  相似文献   

13.
Abstract— The Haber-Weiss cycle:
was investigated at low pH by radiolysis of oxygen or nitrogen saturated solutions of hydrogen peroxide. It was found that reaction 2 has a low rate constant: k 2= 3.0 ± 0.6 M -1 s-1 (pH 2.3, 22°C). The rate determining step of reaction 2 is most probably the transfer of an electron from a π8* orbital of HO2 to the empty u* orbital of H2O2. Overlap between these two orbitals is hindered by the filled π8* orbitals of H2O2. Fe(HI)EDTA catalyses reaction 2.  相似文献   

14.
Abstract— The photocycle of bacteriorhodopsin (bR) and its perturbed forms are investigated by a time-resolved resonance Raman study. These experiments were performed in the C=C stretching and in the fingerprint spectral regions for the acid blue, acid purple and deionized forms of bR.
The main observations are as follows: (1) isomerization of the retinal, from all- trans to 13- cis , occurs in native bR and in all of the acid and deionized perturbed bR species; (2) formation of the early intermediates (the K610 and L550 analogues) also occur in native bR and in all of the perturbed species; and (3) deprotonation of the protonated Schiff base (PSB), to give the M412 type intermediate, occurs in native bR, but is inhibited in all of the perturbed bR species on the time-scale of the native bR photocycle.
The results show that isomerization alone is not a prerequisite for the PSB deprotonation process. The observed photocycle, initiated with retinal isomerization, is found to occur from all- trans to 13- cis in all of the perturbed forms of bR. In addition, the results imply that removal of the cations, of an increase in the hydrogen ion concentration, prevent only the PSB deprotonation process and not the formation of earlier cycle intermediates. Some attention is focused on the two blue forms of bR (acid and deionized) due to the fact that their ground-state absorption maximum, unphotolyzed Raman spectra, and Raman spectra changes during the photocycle are all very similar. The similarities between the acid blue and deionized blue forms in the fingerprint region support previous suggestions that both blue species have nearly the same retinal active site.  相似文献   

15.
Abstract— The absorption spectra, lifetimes, extinction coefficients and intersystem crossing quantum yields of the lowest triplet T 1 of 4-thiouridine have been determined both in acetonitrile and in water. An ordering of 1,3(n,π)* and 1,3(π,π)* states is suggested. Triplet quenching rate constants with various pyrimidine bases or amino acids are reported.  相似文献   

16.
Abstract. Photosynthetic reduction of nitrite to ammonia with type C chloroplasts from the heterocont alga Bumilleriopsis filiformis was investigated using 3,6-diaminodurene/ascorbate and 3,6-diaminodurene/dithioerythritol (DAD/DTE) as electron donor couple. Rates approach 6–10 μmol NO-2 reduced/mg chlorophyll/h and are steady for up to 30 min. The presence of oxygen or NADP+ only slightly diminished the rates of nitrite reduction obtained with DAD/DTE. Illuminated chloroplasts reduce oxygen in the presence of DAD/DTE at 135 μmol/mg chlorophyll/h without acceptor supplied. Photosynthetic oxygen uptake by this system in the presence of ferredoxin and NO-2, however, is inhibited to 42% by nitrite reductase with concurrent nitrite reduction. NO-3 and NO-2 have no effect on photosystem I-mediated NADP+ reduction, NO-2 (10 m M ) inhibits ferricyanide-mediated oxygen evolution to 72%. Also photosystem II reactions assayed e.g. with silicomolybdate are inhibited significantly by NO-2 (1 m M ), but only slightly by NO-3. Nitrite reductase is inhibited by p -chloromercuribenzoate ( p CMB), and this inhibition is prevented by DTE. Results suggest that photosynthetic nitrite reduction can cope with low concentrations of either compound, provided relevant thiol groups are protected.  相似文献   

17.
Abstract— The concentration dependence of the lifetimes of the charge transfer excited states of Cu(dmp)+2 and Cu(dpp) +2 has been investigated in CH2C12 solution at 20°C. (dmp denotes 2,9-dimethyf-1,10-phenanthroline, and dpp denotes 2,9-diphenyl-l,10-phenanthroline.) In dilute solution (< 30 μM) the lifetime of Cu(dmp)+2, is 95 ± 5 ns, independent of the anion. At higher concentrations the lifetime decreases, in most cases, to a limiting value that depends upon the counterion. The measured limiting lifetimes range from 38 ± 3 ns for CIO-4 to 78 ± 5 ns for PF-6. The anion-induced quenching is attributed to exciplex quenching which is mediated by an ion pair which exists in the ground state. The results imply that the quenching ability of the anions follows the order BPh-4 < PF -6, < BF-4 < CIO -4 < NO-3 which is consistent with previous estimates of donor strength. The lifetime of Cu(dpp)+2 is also concentration dependent, but the effect is much smaller because the phenyl substituents impede attack by the anion.  相似文献   

18.
Abstract— The absorption and emission spectra of quinizarin (1,4-dihydroxy-anthraquinone) have been investigated in hydrocarbon and alcoholic solvents. Fluorescence spectra in 3 different Shpolskii matrices were recorded at 14 K. Vibrational analyses of these spectra revealed the presence of 3, 8, and 9 sites in octane, heptane, and hexane matrices, respectively. The fluorescence lifetime was found to be 6.5 ns in hexane and EPA. Fluorescence photoselection measurements in EPA (77 K) showed that the first 4 electronic transitions of quinizarin are polarized parallel, parallel, perpendicular, and parallel to the long molecular axis and can be assigned, in order of increasing energy, to 1B2, 1B2, 1A1 and 1B2 (ππ*)→1A1(C2v,) transitions, respectively. The fluorescent transition is assigned as 1B1 (ππ*)→1A1. The absence of phosphorescence is attributed to the intramolecular hydrogen bonding present which displaces the parent anthraquinone n →* states above the ππ* states, thereby rendering the intersystem crossing (S1-T1) radiationless pathway inefficient.
Photoselection measurements on daunorubicin, a substituted quinizarin and known anticancer drug, revealed an absorption band polarization pattern identical to that of quinizarin. These results are in part at variance with assumptions used in previous work on the intercalation specificity of daunorubicin with DNA.  相似文献   

19.
Abstract— Low-temperature (and some room temperature) absorption and emission, fluorescence and phosphorescence, data including quantum yields and lifetimes have been obtained from the title pyrimidine bases as a function of the nature of the solvent environment. Modest vibrational resolution has been observed for the first time in the absorption spectra, particularly for thymine and uracil. The excitation spectra also show structure. The quantum yields of fluorescence (φF) and phosphorescence are independent of the excitation wavelength. Thymine, thymidine and uracil have profoundly different photophysical properties in polar-aprotic vs polar-protic solvents. The N, N-dimethyl substitution of thymine and uracil produces photophysical changes comparable to the solvent change for the unsubsti-tuted bases. The species involved in the emission processes is the keto (lactam) form. It is probable that 1,3(n,π*) state(s) has(have) changed order relative to a lowest 1(π,π*) state as a consequence of both the solvent change and N, N-dimethyl substitution. The lowest triplet state is assigned as 3(n π*). We propose that an important factor contributing to the previously reported excitation wavelength dependence of φF and φT1isc) for nucleic-acid components is the equilibrium coexistence of H-bonded and non-H-bonded forms each having different photophysical properties. Consideration is given of the impact of the significantly different photophysical properties of nucleic-acid bases as a function of the nature of the solvent upon the photochemical properties.  相似文献   

20.
Abstract A direct comparison of the photochemical interconversions between red (Pr-) and far-red (Pfr-) absorbing forms of highly-purified 124 kDa oat and rye phytochromes under identical experimental conditions was performed. In two different buffer systems at 5°C, the quantum yields for the Pr to Ptr and Pfr to Pr phototransformations under constant red and far-red illumination, φ r and φfr respectively, were determined to be 0.152-0.154 and 0.060-0.065 for oat preparations and 0.172-0.174 and 0.074-0.078 for rye preparations. These values as well as the wavelength dependence of the photoequilibrium produced under continuous illumination throughout the visible and near-ultraviolet spectrum were based on the absorption spectra of the two phytochrome preparations and revised molar absorption coefficients. The molar absorption coefficients were estimated by quantitative amino acid analysis and shown to be identical for the two monocot phytochromes (i.e. 132 mM −1 cm−1 at the red absorption maximum for the Pr form). Because these measurements were performed under identical experimental conditions, including buffer, temperature, light fluence rate, and instrumentation, the differences observed must reflect structural features inherent to the two different monocotyledonous phytochromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号