首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model is developed of an abrupt pressure impact applied to a compressible fluid flowing through a porous medium domain. Nondimensional forms of the macroscopic fluid mass and momentum balance equations yield two new scalar numbers relating storage change to pressure rise. A sequence of four reduced forms of mass and momentum balance equations are shown to be associated with a sequence of four time periods following the onset of a pressure change. At the very first time period, pressure is proven to be distributed uniformly within the affected domain. During the second time interval, the momentum balance equation conforms to a wave form. The behavior during the third time period is governed by the averaged Navier-Stokes equation. After a long time, the fourth period is dominated by a momentum balance similar to Brinkman's equation which may convert to Darcy's equation when friction at the solid-fluid interface dominates.  相似文献   

2.
A set of equations governing the consolidation of a two-phase medium consisting of a porous elastic skeleton saturated with a highly compressible liquid (gas), is described. The homogenization method was utilized to deduce the equations. For the equivalent macroscopic medium, mass and momentum conservation equations and the flow equation of pore liquid are presented. Sample material constants were calculated using laboratory test results which were carried out at the Institute of Geotechnics, Technical University of Wroclaw.  相似文献   

3.
The paper illustrates a biphasic formulation which addresses the dynamic response of fluid saturated porous biphasic media at finite deformations with no restriction on the compressibility of the fluid and of the solid skeleton. The proposed model exploits four state fields of purely kinematic nature: the displacements of the solid phase, the velocity of the fluid, the density of the fluid and an additional macroscopic scalar field, termed effective Jacobian, associated with the effective volumetric deformation of the solid phase.The governing equations are characterized by the property of being all expressed in the reference configuration of the solid phase and by the property of employing only work-conjugate variables, thus avoiding the use of a total Cauchy stress tensor.In particular, the set of governing equations includes a momentum balance equation associated with the effective Jacobian field. This equation, differently from the closure-equations proposed by other authors which express a saturation constraint or a porosity balance, is derived as a stationarity condition on account of a least-action variational principle.  相似文献   

4.
In this second paper, the averaging rules presented in Part 1 are employed in order to develop a general macroscopic balance equation and particular equations for mass, mass of a component, momentum and energy, all of a phase in a porous medium domain. These balance equations involve averaged fluxes. Then macroscopic equations are developed for advective, dispersive and diffusive fluxes, all in terms of averaged state variables of the system. These are combined with the macroscopic balance equations to yield field equations that serve as the core of the mathematical models that describe the transport of extensive quantities in a porous medium domain. It is shown that the methodology of averaging leads to a better understanding of the effective stress concept employed in dealing with transport phenomena in deformable porous media.  相似文献   

5.
In this paper two complementary approaches are used to describe the mechanical behavior of saturated compressible and incompressible porous solids. The macroscopic investigation is based on the mixture theory, restricted by the volume fraction concept. In the micromechanical approach, a hierarchy of conditionally ensemble averaged fluid and solid phase momentum balance equations are derived for a simple model of quasi-static liquid saturated porous media. The ensemble averaged equations for both the phases agree remarkably well with the macroscopic results. A micromechanical basis for Terzhagi's effective stress concept is presented. In addition, an expression for additional partial solid stress modifying the effective stress principle, to account for deformability of solid materials, is also derived.  相似文献   

6.
A mathematical model is developed of an abrupt pressure impact applied to a compressible fluid with solute, flowing through saturated porous media. Nondimensional forms of the macroscopic balance equations of the solute mass and of the fluid mass and momentum lead to dominant forms of these equations. Following the onset of the pressure change, we focus on a sequence of the first two time intervals at which we obtain reduced forms of the balance equations. At the very first time period, pressure is proven to be distributed uniformly within the affected domain, while solute remains unaffected. During the second time period, the momentum balance equation for the fluid conforms to a wave form, while the solute mass balance equation conforms to an equation of advective transport. Fluid's nonlinear wave equation together with its mass balance equation, are separately solved for pressure and velocity. These are then used for the solution of solute's advective transport equation. The 1-D case, conforms to a pressure wave equation, for the solution of fluid's pressure and velocity. A 1-D analytical solution of the transport problem, associates these pressure and velocity with an exponential power which governs solute's motion along its path line.  相似文献   

7.
Sorek  S.  Levy  A.  Ben-dor  G.  Smeulders  D. 《Transport in Porous Media》1999,34(1-3):63-100
Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms accounting for the momentum exchange between the phases through the solid-fluid interfaces. An additional relation presenting the deviation (assumed of a lower order of magnitude) from the macroscopic momentum balance equation, is also presented. Nondimensional investigation of the phases' macroscopic balance equations, yield four evolution periods associated with different dominant balance equations which are obtained following an abrupt change in fluid's pressure and temperature. During the second evolution period, the inertial terms are dominant. As a result the momentum balance equations reduce to nonlinear wave equations. Various analytical solutions of these equations are described for the 1-D case. Comparison with literature and verification with shock tube experiments, serve as validation of the developed theory and the computer code.A 1-D TVD-based numerical study of shock wave propagation in saturated porous media, is presented. A parametric investigation using the developed computer code is also given.  相似文献   

8.
A theory is developed providing a rational framework for spatial scale- dependent fluid’s flow and heat transfer, and mass of a component migrating with it through porous media. Introducing the assumption of a non-Brownian type motion and referring to asymptotic expansion in powers of a small defined parameter, we develop a novel approach associated with macroscopic balance equations obtained by averaging over a Representative Elementary Volume (REV). We prove that these equations can be decomposed into a primary part that refers to the REV length scale and a secondary part valid at a length scale smaller than that of the corresponding REV length. Further to our previous development, we obtain two general forms of the primary and secondary macroscopic balance equations. One is based on the assumption that the advective flux of the extensive quantity is dominant over that of the dispersive flux, whereas the other disregards this assumption. Moreover we also introduce the primary and secondary macroscopic forms for the fluid heat- transfer equation. Considering a Newtonian fluid, the resulting primary Navier–Stokes equation can vary from a nonlinear wave equation to a drag-dominant equation at the fluid–solid interface (Darcy’s law). The secondary momentum balance equation describes a wave equation governing the concurrent propagation of the intensive momentum and the dispersive momentum flux, deviating from their corresponding average terms. The primary macroscopic fluid heat-transfer equation accounts for advective and dispersive heat fluxes and the secondary macroscopic heat-transfer equation involves the simultaneous advection of heat deviating from its corresponding intensive average quantity. The primary macroscopic solute mass balance equation accounts for advection and hydrodynamic dispersion. The secondary macroscopic component mass balance equation is in the form of pure advection governing migration of the deviation from the average component concentration. At this stage, we focus on establishing the viability of the developed theory. We do this by arguing that field observations of motion at small spatial scales are coherent with the hyperbolic characteristics of the secondary balance equations. Field observations under natural gradient flow conditions show excessive high concentration (average of 50 mg/L) of colloids under land irrigated by sewage effluents. We argue that this displacement of condensed colloidal parcels manifests the theoretical findings for the smaller spatial scale. Further evidence show the accumulation of particles moving behind the front of an emitted shockwave. We consider this as an experimental proof reinforcing the argument that colloidal migration is subject to the action of a shockwave in the fluid and pure advection transport, governed by the respective suggested hyperbolic macroscopic balance equations of fluid momentum and component mass at the smaller spatial scale.  相似文献   

9.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

10.
In this paper we analyze the flow of a Maxwell fluid in a rigid porous medium using the method of volume averaging. We first present the local volume averaged momentum equation which contains Darcy-scale elastic effects and undetermined integrals of the spatial deviations of the pressure and velocity. A closure problem is developed in order to determine the spatial deviations and thus obtain a closed form of the momentum equation that contains a time-dependent permeability tensor. To gain some insight into the effects of elasticity on the dynamics of flow in porous media, the entire problem is transformed to the frequency domain through a temporal Fourier transform. This leads to a dynamic generalization of Darcy's law. Analytical results are provided for the case in which the porous medium is modeled as a bundle of capillary tubes, and a scheme is presented to solve the transformed closure problem for a general microstructure.  相似文献   

11.
This paper addresses the derivation of the macroscopic momentum equation for flow through a nonhomogeneous porous matrix, with reference to dendritic structures characterized by evolving heterogeneities. A weighted averaging procedure, applied to the local Stokes' equations, shows that the heterogeneous form of the Darcy's law explicitly involves the porosity gradients. These extra terms have to be considered under particular conditions, depending on the rate of geometry variations. In these cases, the local closure problem becomes extremely complex and the full solution is still out of reach. Using a simplified two-phase system with continuous porosity variations, we numerically analyze the limits where the usual closure problem can be retained to estimate the permeability of the structure.  相似文献   

12.
The analysis of two-phase flow in porous media begins with the Stokes equations and an appropriate set of boundary conditions. Local volume averaging can then be used to produce the well known extension of Darcy's law for two-phase flow. In addition, a method of closure exists that can be used to predict the individual permeability tensors for each phase. For a heterogeneous porous medium, the local volume average closure problem becomes exceedingly complex and an alternate theoretical resolution of the problem is necessary. This is provided by the method of large-scale averaging which is used to average the Darcy-scale equations over a region that is large compared to the length scale of the heterogeneities. In this paper we present the derivation of the large-scale averaged continuity and momentum equations, and we develop a method of closure that can be used to predict the large-scale permeability tensors and the large-scale capillary pressure. The closure problem is limited by the principle of local mechanical equilibrium. This means that the local fluid distribution is determined by capillary pressure-saturation relations and is not constrained by the solution of an evolutionary transport equation. Special attention is given to the fact that both fluids can be trapped in regions where the saturation is equal to the irreducible saturation, in addition to being trapped in regions where the saturation is greater than the irreducible saturation. Theoretical results are given for stratified porous media and a two-dimensional model for a heterogeneous porous medium.  相似文献   

13.
We study the asymptotic behavior of compressible isentropic flow through a porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping. As t ?? ??, the density is conjectured to obey the well-known porous medium equation and the momentum is expected to be formulated by Darcy??s law. In this paper, we prove that any L ?? weak entropy solution to the Cauchy problem of damped Euler equations with finite initial mass converges strongly in the natural L 1 topology with decay rates to the Barenblatt profile of the porous medium equation. The density function tends to the Barenblatt solution of the porous medium equation while the momentum is described by Darcy??s law. The results are achieved through a comprehensive entropy analysis, capturing the dissipative character of the problem.  相似文献   

14.
Fluid–structure coupling is addressed through a unified equation for compressible Newtonian fluid flow and elastic solid deformation. This is done by introducing thermodynamics within Cauchy׳s equation through the isothermal compressibility coefficient that is experimentally measurable for both fluids and solids. The vectorial resolution of the governing equation, where every component of velocity vectors and displacement variation vectors is calculated simultaneously in the overall multi-phase system, is characteristic of a monolithic resolution involving no iterative coupling. For system equation closure, mass density and pressure are both re-actualized from velocity vector divergence, when the shear stress tensor within the solid phase is re-actualized from the displacement variation vectors. This novel approach is first validated on a two-phase system, involving a plane fluid–solid interface, through the two following test cases: (i) steady-state compression and (ii) longitudinal and transverse elastic wave propagations. Then the 3D study of compressive fluid injection towards an elastic solid is analyzed from initial time to steady-state evolution.  相似文献   

15.
Over the past two decades most discussions of the simulation of miscible displacement in porous media were related to incompressible flow problems; recently, however, attention has shifted to compressible problems. The first goal of this paper is the derivation of the governing equations (mathematical models) for a hierarchy of miscible isothermal displacements in porous media, starting from a very general single-phase, multicomponent, compressible flow problem; these models are then compared with previously proposed models. Next, we formulate an extension of the modified method of characteristics with adjusted advection to treat the transport and dispersion of the components of the miscible fluid; the fluid displacement must be coupled in a two-stage operator-splitting procedure with a pressure equation to define the Darcy velocity field required for transport and dispersion, with the outer stage incorporating an implicit solution of the nonlinear parabolic pressure equation and an inner stage for transport and diffussion in which the mass fraction equations are solved sequentially by first applying a globally conservative Eulerian–Lagrangian scheme to solve for transport, followed by a standard implicit procedure for including the diffusive effects. The third objective is a careful investigation of the underlying physics in compressible displacements in porous media through several high resolution numerical experiments. We consider real binary gas mixtures, with realistic thermodynamic correlations, in homogeneous and heterogeneous formations.  相似文献   

16.
The effects of non-Newtonian behaviour of a fluid and unsteadiness on flow in a channel with non-uniform cross-section have been investigated. The rheological behaviour of the fluid is assumed to be described by the constitutive equation of a viscoelastic fluid obeying the Oldroyd-B model. The finite element method is used to analyse the flow. The novel features of the present method are the adoption of the velocity correction technique for the momentum equations and of the two-step explicit scheme for the extra stress equations. This approach makes the computational scheme simple in algorithmic structure, which therefore implies that the present technique is capable of handling large-scale problems. The scheme is completed by the introduction of balancing tensor diffusivity (wherever necessary) in the momentum equations. It is important to mention that the proper boundary condition for pressure (at the outlet) has been developed to solve the pressure Poisson equation, and then the results for velocity, pressure and extra stress fields have been computed for different values of the Weissenberg number, viscosity due to elasticity, etc. Finally, it is pertinent to point out that the present numerical scheme, along with the proper boundary condition for pressure developed here, demonstrates its versatility and suitability for analysing the unsteady flow of viscoelastic fluid through a channel with non-uniform cross-section.  相似文献   

17.
The flow of a non-Newtonian fluid through a porous media in between two parallel plates at different temperatures is considered. The governing momentum equation of third-grade fluid with modified Darcy’s law and energy equation have been derived. Approximate analytical solutions of momentum and energy equations are obtained by using perturbation techniques. Constant viscosity, Reynold’s model viscosity, and Vogel’s model viscosity cases are treated separately. The criteria for validity of approximate solutions are derived. A numerical residual error analysis is performed for the solutions. Within the validity range, analytical and numerical solutions are in good agreement.  相似文献   

18.
Wave propagation in fractured porous media   总被引:3,自引:0,他引:3  
A theory of wave propagation in fractured porous media is presented based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the validity of Darcy's law in fractured porous media. The macroscopic constitutive relations of elastic porous media saturated by one or two fluids and saturated fractured porous media can be obtained from the constitutive relations developed in the paper. In the simplest case, the final set of governing equations reduce to Biot's equations containing the same parameters as of Biot and Willis.Now at Izmir Institute of Technology, Anafartalar Cad. 904, Basmane 35230, Izmir, Turkey.  相似文献   

19.
Ahmadi  A.  Aigueperse  A.  Quintard  M. 《Transport in Porous Media》2001,43(2):309-353
Based on the volume averaging method, a macroscopic model is developed for the upscaling of NAPL transport in a porous medium idealised by a network model. Under the assumption of local mass non-equilibrium, a macroscopic equation involving a dispersion tensor, additional convective terms and a linear form for the interfacial mass flux is obtained. The resolution of the two local closure problems obtained allow the determination of the local properties without adjustable parmeters. These problems are solved in a semi-analytical, semi-numerical manner on the network. The originality of this work is the association of the upscaling by volume averaging method with the network approach. The local properties, including the dispersion tensor and the mass exchange coefficient, can therefore be calculated over a large number of pore-bodies and pore-throats in a computationaly tractable manner, thus leading to more significant results. Results are presented for 3D, spatially periodic models of porous media.  相似文献   

20.
The Forchheimer equation: A theoretical development   总被引:2,自引:0,他引:2  
In this paper we illustrate how the method of volume averaging can be used to derive Darcy's law with the Forchheimer correction for homogeneous porous media. Beginning with the Navier-Stokes equations, we find the volume averaged momentum equation to be given by $$\langle v_\beta \rangle = - \frac{K}{{\mu _\beta }} \cdot (\nabla \langle p_\beta \rangle ^\beta - \rho _\beta g) - F\cdot \langle v_\beta \rangle .$$ The Darcy's law permeability tensor, K, and the Forchheimer correction tensor, F, are determined by closure problems that must be solved using a spatially periodic model of a porous medium. When the Reynolds number is small compared to one, the closure problem can be used to prove that F is a linear function of the velocity, and order of magnitude analysis suggests that this linear dependence may persist for a wide range of Reynolds numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号