首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the increased demand for new reference materials certified for total and methylmercury (MeHg) a sample of mussel homogenate (IAEA-142) has been prepared. Thirteen experienced laboratories reported results for total Hg of which 9 laboratories also reported results for MeHg content. Laboratories reporting MeHg results used various isolation techniques (solvent extraction, saponification, acid leaching, ion-exchange separation, and distillation) and detection systems (cold vapour atomic absorption spectrometry (CV AAS), cold vapour atomic fluorescence spectrometry (CV AFS), gas chromatography with electron capture detector (GC/ECD) and HPLC with CV AAS detector). In the case of total Hg, most of the laboratories used acid digestion, only two used alkaline dissolution, followed either by CV AAS or CV AFS. One laboratory used neutron activation analyses with radiochemical separation. The data received were in good agreement. The value for total Hg was certified to be 126 ng/g, with a 95% confidence interval from 119 to 132 ng/g. For MeHg the certified value of 47 ng/g expressed as Hg was assigned, with a 95% confidence interval from 43 to 51 ng/g. Stability testing has shown that both total and MeHg are stable if samples are stored in a dry and dark place at room temperature. The sample is now available as a certified reference material and is, in particular, useful for quality control measurements of Hg and MeHg in mussel samples at low concentration levels. Received: 24 September 1996 / Revised: 20 November 1996 / Accepted: 8 December 1996  相似文献   

2.
An intercomparison exercise was organized between seven laboratories using various isolation procedures (extraction, distillation, ion-exchange and alkaline digestion) and detection systems (CV AAS, cold vapour atomic absorption spectroscopy; CV AFS, cold vapour atomic fluorescence spectroscopy; GC, ECD, gas chromatography electron capture detector and HPLC with CV AFS detection) for determination of methylmercury compounds in sediment sample. All certification criteria were fulfilled and therefore the value for total concentration of methylmercury compounds was certified to be 5.46 ng g?1, with a 95% confidence interval from 4.07–5.84 ng g?1. The acceptable range, calculated as two times the confidence interval of the mean is therefore from 4.68–6.23 ng g?1. This is the first sediment reference material ever to be certified for concentration of methylmercury compounds. Comparison of the data obtained by various methodologies has shown that the most critical step is the isolation of methylmercury compounds from binding sites. Acid leaching only cannot release methylmercury compounds quantitatively. Total release of methylmercury compounds could only be achieved by alkaline digestion or distillation. This simple intercomparison exercise has shown that since large numbers of laboratories world-wide are performing methylmercury compound analyses using various improved and specific separation methods and sensitive detection systems, certification of methylmercury compounds in different biological and environmental samples should not be a problem in the future.  相似文献   

3.
The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg(2+)) and monomethylmercury compounds (MeHg) in natural water samples at the pg L(-1) level. The method is based on the simultaneous extraction of MeHg and Hg(2+)dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na(2)S, removal of H(2)S by purging with N(2), subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L(-1) for MeHg and 0.06 ng L(-1) for Hg(2+)when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg(2+). Recoveries were 90-110% for both species.  相似文献   

4.
A simple and ultrasensitive method, which was based on cold vapor generation (CVG) coupled to atomic fluorescence spectrometry (AFS), was proposed for speciation analysis of inorganic mercury (Hg2+) and methylmercury (MeHg) in water samples. In the presence of UV irradiation, all the mercury (MeHg+Hg2+) in a sample solution can be reduced to Hg0 by SnCl2; without UV irradiation, only Hg2+ species can be determined. So the concentration of MeHg can be obtained from the difference of the total mercury and Hg2+ concentration; thus, speciation analysis of Hg2+ and MeHg was simply achieved without chromatographic separation. Under the optimized experimental conditions, the limits of detection were 0.01 ng mL-1 for both Hg2+ and MeHg. The sensitivity and limit of detection were not dependent on the mercury species, and a simple Hg2+ aqueous standard series can be used for the determination of both Hg2+ and MeHg.  相似文献   

5.
建立了微波萃取高效液相色谱-冷原子荧光光谱法(MAE-HPLC-CVAFS)测定沉积物中甲基汞(MeHg+)和无机汞(Hg2+)的方法。以0.1%(V/V)2-巯基乙醇为萃取剂,用于沉积物样品中汞形态的萃取,在80℃下萃取8 min,萃取液直接注入HPLC-CVAFS系统分析。在优化条件下,MeHg+和Hg2+的检出限分别为0.58和0.48 ng/g;加标回收率分别为96.2%和95.8%;RSD(n=6)分别为5.7%和4.1%。对标准参考物质(IAEA-405和ERM-CC580)的分析结果与推荐值一致。本方法简单、快速、准确、检出限低,抗干扰能力强,具有很好的实用性和推广价值。  相似文献   

6.
In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L(-1) for MeHg(+), Hg(2+) and EtHg(+), respectively. The relative standard deviation (RSD, n=6) of the peak height for 3, 6 and 3 μg L(-1) of MeHg(+), Hg(2+) and EtHg(+) (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC-CV/AFS hyphenated systems, the proposed MSC-CV/AFS system permitted a higher sampling frequency and low instrumental and operational costs. The developed method was validated by the determination of a certified reference material DORM-2 (dogfish muscle), and was further applied for the determination of mercury species environmental and biological samples.  相似文献   

7.
A simple and reliable method to determine total and inorganic mercury in biological certified reference material (CRM) by cold vapor atomic absorption spectrometry (CV AAS) is proposed. After the CRM treatment at room temperature with tetramethylammonium hydroxide (TMAH), inorganic mercury is determined by CV AAS. Total mercury is measured by the same technique, after sample acid digestion in a microwave oven. Organic mercury, basically methylmercury, is obtained by difference. In both procedures, the quartz tube is kept at room temperature. By means of analysis of the following reference materials: pig kidney, lobster hepatopancreas, dogfish liver and mussel tissue, it was clear that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. Only one calibration curve against aqueous standards in acidic medium was carried out for both procedures. The concentrations obtained by both procedures are in agreement with the certified values according to the t-test at a 95% confidence level. The relative standard deviations were lower than 3.0% for digested CRM and 6.0% for CRM treated with TMAH for most of the samples. The limits of detection in the samples were 0.02 µg g− 1 and 0.04 µg g− 1 for inorganic and total Hg, respectively, since the sample mass for total mercury was half of that for inorganic mercury determination. Simplicity and high efficiency without using chromatographic techniques are some of the qualities of the proposed method, being adequate for fractionation analysis of mercury in biological samples.  相似文献   

8.
《Microchemical Journal》2010,94(2):206-210
A simple and reliable method to determine total and inorganic mercury in biological certified reference material (CRM) by cold vapor atomic absorption spectrometry (CV AAS) is proposed. After the CRM treatment at room temperature with tetramethylammonium hydroxide (TMAH), inorganic mercury is determined by CV AAS. Total mercury is measured by the same technique, after sample acid digestion in a microwave oven. Organic mercury, basically methylmercury, is obtained by difference. In both procedures, the quartz tube is kept at room temperature. By means of analysis of the following reference materials: pig kidney, lobster hepatopancreas, dogfish liver and mussel tissue, it was clear that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. Only one calibration curve against aqueous standards in acidic medium was carried out for both procedures. The concentrations obtained by both procedures are in agreement with the certified values according to the t-test at a 95% confidence level. The relative standard deviations were lower than 3.0% for digested CRM and 6.0% for CRM treated with TMAH for most of the samples. The limits of detection in the samples were 0.02 µg g 1 and 0.04 µg g 1 for inorganic and total Hg, respectively, since the sample mass for total mercury was half of that for inorganic mercury determination. Simplicity and high efficiency without using chromatographic techniques are some of the qualities of the proposed method, being adequate for fractionation analysis of mercury in biological samples.  相似文献   

9.
Summary Atomic fluorescence (AFS), absorption (AAS) and emission (AES) systems were evaluated for the determination of inorganic mercury. Identical vapour generation and amalgamation procedures were used to permit direct comparison of the performance of a commercial long-path AAS instrument to laboratory constructed non-dispersive AFS as well as He-MIP based AES instruments. Instrumental noise-limited detection limits (LOD) were 0.94, 2.4, 2.8 pg for AAS, AES and AFS techniques, respectively. Methodological LOD's were found to be blank controlled and similar for all three instruments, viz. 9, 25 and 16 pg for AAS, AFS and AES, respectively. All three systems produced accurate results at the low ng/l concentration, as verified by the analysis of a certified river water reference material (NRCC ORMS-1).  相似文献   

10.
Some parameters affecting the accuracy of various approaches to methylmercury (MeHg) determination in biological and environmental samples were studied. Different isolation techniques (ion-exchange, extraction, volatilization, distillation) and final measurement via cold vapour atomic absorption spectroscopy (CV AA) or gas chromatography (GC) were compared. Results obtained by the various isolation techniques are comparable for almost all biological and environmental samples, except for soils and some sediments, where disagreement between the results obtained by GC and CV AA was found. In order to resolve these problems, a new separation technique based on distillation of MeHg from the sample followed either by CV AA or GC was developed. The new method results in very good recovery and reproducibility (95 ± 2%) for all samples examined (fish, mussel, shrimp, blood, hair, algae, sediment, etc.), is specific for MeHg and provides for its differentiation from other species by an indirect CV AA determination. Gas-chromatographic measurement of the isolated MeHg using different packings and conditioning of the columns is also discussed. The distillation method with GC detection is advantageous in producing cleaner chromatograms and in prolonging the life-time of the packing and the intervals between reconditioning.  相似文献   

11.
A comprehensive method for simultaneous determination of methylmercury (MeHg) and ethylmercury (EtHg) in rice by capillary gas chromatography (GC) coupled on-line with atomic fluorescence spectrometry was developed. The experimental conditions, including the pyrolyzer temperature and flow rates of the make-up gas and sheath gas, were optimized in detail. The absolute detection limits (3sigma) were 0.005 ng as Hg for both MeHg and EtHg. The relative standard deviation values (n=5) for 10 ng Hg/mL of MeHg and EtHg were 2.5 and 1.3%, respectively. The method was evaluated by analyzing 2 certified reference materials (DORM-2 and GBW08508), and the determined values of MeHg and total mercury concentrations were in good agreement with the certified values. In addition, the recoveries of MeHg and EtHg spiked into a rice sample collected from Jiangsu province in China were 86 and 77%, respectively. The proposed method was applied to analysis of MeHg and EtHg in 25 rice samples cultivated in 15 provinces of China. In all samples, MeHg was detectable and no EtHg was found. The MeHg contents in rice samples ranged from 1.9 to 10.5 ng/g, accounting for 7-44% of the total mercury measured.  相似文献   

12.
Several decomposition procedures and their influence on the determination of mercury by electrothermal (ET) and cold vapour (CV) atomic absorption spectrometry (AAS) have been studied. Soil samples were decomposed by microwave digestion in closed and open vessels as well as by digestion under reflux according to German standard. The use of different acids (HNO3, HCl or aqua regia) was evaluated and compared in respect to their influence on the determination of mercury by ET AAS and CV AAS. The digestion solutions were analyzed by ET AAS with a palladium modifier and by CV AAS using SnCl2 or NaBH4, as reducing agents. The detection limits obtained with different procedures were also evaluated. For the soil containing 6.25 g/g of Hg the ET AAS measurements were possible. In the case of lower concentration of mercury the CV AAS determination following the microwave digestion procedure with HCl or aqua regia is recommended. The accuracy of the proposed procedure was confirmed by the determination of total mercury in SRM 2711 Montana Soil.On leave from: Institut für Analytische Chemie, Technische Universitat Wien, Getreidemarkt 9, A-1060 Wien, Austria  相似文献   

13.
A simple, fast, and accurate method for the simultaneous determination of methylmercury (MeHg(+)), monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) in seafood is proposed. The method makes use of relatively cheap instrumentation and allows simultaneous analysis of those four species in a routine basis. The sample is treated with methanolic potassium hydroxide in an ultrasound bath, derivatised with sodium tetraethylborate (NaBEt(4)), preconcentrated into n-hexane and analysed by gas chromatography with atomic emission detection (GC-MIP/AES). The soft extraction conditions provided by ultrasound energy prevent chemical decomposition of the analytes and allow fast and efficient recovery of the species considered. Both the extraction and the derivatisation/preconcentration steps were optimised. Detection limits of 34, 3, 6 and 8 ng g(-1) (dry mass) were obtained for MeHg(+), MBT, DBT and TBT, respectively, using the best experimental conditions found. The uncertainty of the analysis ranged from 11% (MeHg(+)) to 15% (MBT). The accuracy of the method was checked by the analysis of several certified reference materials, e.g., BCR 477 (mussel tissue, MBT, DBT and TBT), DOLT-2 (dogfish liver, MeHg(+)), BCR 463 (tuna fish, MeHg(+)) and NIST 2976 (mussel tissue, MeHg(+)) with satisfactory results. Several oyster samples collected in the estuary of the Oka River (Urdaibai, Unesco Reserve of the Biosphere, Basque Country) during four sampling campaigns in 2003-2004 were processed following the proposed procedure. Concentrations ranging from 65 to 149 ng g(-1) (MeHg(+)), 相似文献   

14.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described.  相似文献   

15.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described. Received: 10 March 1997 / Revised: 29 January 1998 / Accepted: 5 February 1998  相似文献   

16.
Liang L  Horvat M  Cernichiari E  Gelein B  Balogh S 《Talanta》1996,43(11):1883-1888
A solvent extraction technique involving no critical clean-up steps was developed for the determination of methylmercury (MeHg) in environmental and biological samples by aqueous phase ethylation, room temperature precollection, gas chromatographic separation and cold vapor atomic fluorescence spectrometric detection. Samples were first digested with KOH-methanol. then acidified prior to extraction with methylene chloride. MeHg was back-extracted from the solvent phase into water prior to aqueous phase ethylation. Recoveries close to 100% were obtained with RSDs less than 5% for all samples analyzed, making direct standardization possible. The detection limits were about 0.08 ng g(-1) when analyzing 0.1 g of dry sea plant homogenate and 0.02 ng g when analyzing 0.5 g of wet sediment samples. Various certified reference materials and intercomparison samples, including sediments, sea plants and tissues, were analyzed, and the results were in good agreement with the certified values. The technique was applied to the determination of MeHg in both sea plants from the Atlantic and the red blood protein of dolphins from the Mediteranean Sea. in sediments from the Mediterranean Sea and Minnesota rivers and in soils from different origins. Concentrations of MeHg in dolphin red blood protein samples were as high as 300 ng g(-1).  相似文献   

17.
Rahman L  Corns WT  Bryce DW  Stockwell PB 《Talanta》2000,52(5):833-843
A novel method for determination of Hg, Se, Bi, As and Sb based on microwave digestion followed by continuous flow vapour generation atomic fluorescence spectrometry was developed. The digestion for Hg was based on a two stage digestion involving HNO(3) and H(2)O(2), whilst for the hydride forming elements a common digestion using HCl and H(2)O(2) was found to be the most effective. The instrumentation and chemistry were optimised in order to provide the best accuracy and precision. The method detection limit for hair samples was found to be 0.2 ng g(-1) for Hg and between 2 and 10 ng g(-1) for the hydride forming elements. The atomic fluorescence detector showed excellent linearity over the concentration ranges studied with linear correlation co-efficients between 0.99984 and 0.99997. To validate the accuracy of the method a human hair certified reference material (GBW 0706) was analysed and excellent agreement with the certified value was obtained for all elements.  相似文献   

18.
《Analytical letters》2012,45(14):2657-2669
Abstract

A simple and rapid method based on closed vessel microwave‐assisted extraction was developed to determine total, inorganic mercury and organomercury in biological tissues. Total mercury was extracted using HNO3:H2O2 (4:1) mixture. In a separate subsample, extraction of mercury species was carried out with tetramethylammonium hydroxide (TMAH). The total and inorganic mercury analyses were carried out by flow‐injection cold‐vapor atomic fluorescence spectrometry (FI‐CV‐AFS). The organomercury concentration was calculated by difference. Considering a sample amount of 0.2 g, the detection limits were 4 and 26 ng/g for total and inorganic mercury, respectively. The accuracy of the procedures was checked by analyzing certified reference materials and recovery studies of spiked fish tissues.  相似文献   

19.
The purpose of the study was to optimise analytical methods for determination of the chemical speciation of mercury in studies of protective mechanisms of selenium. Optimisation of the methods was performed using CRM DOLT-2 (Dogfish liver), both in its original form and after separation of various fractions. The sample was homogenised with 10 mM Tris-HCl buffer (pH 7.6) and ultracentrifuged. The soluble phase obtained was applied to a size exclusion chromatography column (Sephadex ¶G-75 column) for separation of various protein fractions. Total mercury (total Hg), monomethyl mercury (MeHg) and selenium (Se) were determined in whole dogfish liver tissue and its soluble and insoluble phases (pellet). Different approaches for determination of total Hg and MeHg were compared. Simultaneous determination of MeHg and inorganic mercury (Hg2+) was based on alkaline dissolution and/or acid leaching, followed by ethylation, room temperature precollection, isothermal gas chromatography (GC), pyrolysis and detection with cold vapour atomic fluorescence spectrometry (CVAFS). The sum of MeHg and Hg2+ was compared to total Hg results obtained by acid digestion and CVAAS detection. The accuracy of MeHg determination was checked by its determination using acid leaching at room temperature, solvent extraction, back extraction into Milli-Q water, ethylation, GC and CVAFS detection. For the insoluble phase it is recommended to use solvent extraction for MeHg and acid digestion CVAAS for total Hg. For determination of MeHg and Hg2+ in the lyophilised sample and water soluble fractions containing low concentrations of mercury species, the simultaneous measurement of MeHg and Hg2+ after alkaline dissolution is the most appropriate method.  相似文献   

20.
Solid-phase extraction with two-step elution has been developed for effective elimination of copper and iron interference with mercury determination by flow-injection cold vapour atomic absorption spectrometry (CV AAS). Sodium tetrahydroborate(III) was used as reducing agent. Cation-exchanger Dowex 50Wx4 was applied for the sorption of mercury and both interfering ions. In the first step elution of Cu(II) and Fe(III) was performed using 0.5 mol L–1 KF solution. Then mercury was eluted with 0.1% thiourea in 8% HCl. The detection limit (3) for Hg(II) was 27 ng L–1. The expanded uncertainty estimated for the whole procedure was about 6%. The accuracy of the proposed method was evaluated by determination of the recovery of known amount of mercury added to mineral, spring, and tap waters, and by analysis of a certified reference material BCR-144R (sewage sludge).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号