首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscous flow in a circular cylindrical tube containing an infinite line of viscous liquid drops equally spaced along the tube axis is considered under the assumption that a surface tension, sufficiently large, holds the drops in a nearly spherical shape. Three cases are considered: (1) axial translation of the drops, (2) flow of the external fluid past a line of stationary drops, and (3) flow of external fluid and liquid drops under an imposed pressure gradient. Both fluids are taken to be Newtonian and incompressible, and the linearized equations of creeping flow are used.The results show that both drag and pressure drop per sphere increase as the spacing increases at fixed radius and also increase as the radius of the drop increases. The presence of the internal motion reduces the drag and pressure gradients in all cases compared to rigid spheres, particularly for drops approaching the size of the tube.  相似文献   

2.
The problem of drag minimization in a viscous fluid by means of controlled suction (blowing) is considered. In the low Reynolds number approximation matched asymptotic expansions are used to construct the second approximation and analytic solutions of the optimization problem are found for a sphere and a circular cylinder. Transition from unseparated to separated flow is accompanied by a qualitative restructuring of the optimal solution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–32, May–June, 1989.  相似文献   

3.
The paper examines the dynamics and stability of fluid-conveying cylindrical shells having pinned–clamped or clamped–pinned boundary conditions, where “pinned” is an abbreviation for “simply supported”. Flügge's equations are used to describe the shell motion, while the fluid-dynamic perturbation pressure is obtained utilizing the linearized potential flow theory. The solution is obtained using two methods — the travelling wave method and the Fourier-transform approach. The results obtained by both methods suggest that the negative damping of the clamped–pinned systems and positive damping of the pinned–clamped systems, observed by previous investigators for any arbitrarily small flow velocity, are simply numerical artefacts; this is reinforced by energy considerations, in which the work done by the fluid on the shell is shown to be zero. Hence, it is concluded that both systems are conservative.  相似文献   

4.
5.
The effect of a particle on the basic flow is studied, and the equations of motion of the particle are formulated. The problem is solved in the Stokes approximation with an accuracy up to the cube of the ratio of the radius of the sphere to the distance from the center of the sphere to peculiarities in the basic flow. An analogous problem concerning the motion of a sphere in a nonuniform flow of an ideal liquid has been discussed in [1]. We note that the solution is known in the case of flow around two spheres by a uniform flow of a viscous incompressible liquid [2], and we also note the papers [3, 4] on the motion of a small particle in a cylindrical tube.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 71–74, July–August, 1976.  相似文献   

6.
An elastic membrane backed by a fluid-filled cavity in an elastic body is set into an infinite plane baffle. A time harmonic wave propagating in the acoustic fluid in the upper half-space is incident on the plane. It is assumed that the densities of this fluid and the fluid inside the cavity are small compared with the densities of the membrane and of the elastic walls of the cavity, thus defining a small parameter . Asymptotic expansions of the solution of this scattering problem as →0, that are uniform in the wave number k of the incident wave, are obtained using the method of matched asymptotic expansions. When the frequency of the incident wave is bounded away from the resonant frequencies of the membrane, the cavity fluid, and the elastic body, the resultant wave is a small perturbation (the “outer expansion”) of the specularly reflected wave from a completely rigid plane. However, when the incident wave frequency is near a resonant frequency (the “inner expansion”) then the scattered wave results from the interaction of the acoustic fluid with the membrane, the membrane with the cavity fluid, and finally the cavity fluid with the elastic body, and the resulting scattered field may be “large”. The cavity backed membrane (CBM) was previously analyzed for a rigid cavity wall. In this paper, we study the effects of the elastic cavity walls on modifying the response of the CBM. For incident frequencies near the membrane resonant frequencies, the elasticity of the cavity gives only a higher order (in ) correction to the scattered field. However, near a cavity fluid resonant frequency, and, of course, near an elastic body resonant frequency the elasticity contributes to the scattered field. The method is applied to the two dimensional problem of an infinite strip membrane backed by an infinitely long rectangular cavity. The cavity is formed by two infinitely long rectangular elastic solids. We speculate on the possible significance of the results with respect to viscoelastic membranes and viscoelastic instead of elastic cavity walls for surface sound absorbers.  相似文献   

7.
An analytical solution is carried out for the problem of the flow around a sphere with material cross flow at Reynolds numbers less than 1 and a blowing velocity less than the free stream velocity. The method of asymptotic expansions of Pearson and Proudman is used for the solution. Expressions are obtained for the distribution of the current and velocity component functions as well as for the aerodynamic drag coefficient of the sphere. It is shown that blowing diminishes the sphere drag, where its influence will increase as the Reynolds number grows.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 103–109, May–June, 1972.  相似文献   

8.
We study the flow of a viscous fluid through a slender tapered tube whose radius may reduce to zero. The vessel is closed at the end, so that the flow is made possible owing to the fact that a portion of the tube wall is permeable. The smallness of the tube aspect ratio is exploited using an upscaling technique leading to a degenerate differential equation for pressure. Solutions are found either in explicit form or as power series expansions. This class of flows may represent, though in a largely approximated way, the blood flow though a coronary artery.  相似文献   

9.
The creeping motion Ground a sphere situated axisymmetrically near the entrance of asemi-infinite circular cylindrical tube is analyzed using infinite series solutions for thevelocity components. pressure and the stream function. Truncating the infinite series. thecorresponding coefficients in the series are determined by a collocation technique. The dragfactor and the stress distribution on the surface of the sphere are calculated for the sphere inmotion in quiescent fluid and for the flow with uniform velocity at the entrance past a rigidlyheld sphere. The results indicate that a sphere near the entrance which has a uniformentrance velocity profile will suffer larger drag than that in infinite tube.Theconvergence of the collocation technique is tested by numerical calculation. It is shown thatthe technique has good convergence properties.  相似文献   

10.
Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. Two models are examined: a compliant channel and an axisymmetric tube. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and compared to existing experimental data. Steady two-dimensional flow in a collapsible channel with initial tension is also simulated and the results are compared with numerical solutions from the literature. Computational results for an axisymmetric tube show that as cross-sectional area falls with a reduction in downstream pressure, flow rate increases and reaches a maximum when the speed index (mean velocity divided by wave speed) is near unity at the point of minimum cross-sectional area, indicative of wave-speed flow limitation or “choking” (flow speed equals wave speed) in previous one-dimensional studies. For further reductions in downstream pressure, the flow rate decreases. Cross-sectional narrowing is significant but localized. For the particular wall and fluid properties used in these simulations, the area throat is located near the downstream end when the ratio of downstream-to-upstream wall thickness is 2; as wall taper is increased to 3, the constriction moves to the upstream end of the tube. In the planar two-dimensional channel, area reduction and flow limitation are also observed when outlet pressure is decreased. In contrast to the axisymmetric case, however, the elastic wall in the two-dimensional channel forms a smooth concave surface with the area throat located near the mid-point of the elastic wall. Though flow rate reaches a maximum and then falls, the flow does not appear to be choked.  相似文献   

11.
A study is made with an analysis of an incompressible viscous fluid flow past a slightly deformed porous sphere embedded in another porous medium. The Brinkman equations for the flow inside and outside the deformed porous sphere in their stream function formulations are used. Explicit expressions are investigated for both the inside and outside flow fields to the first order in small parameter characterizing the deformation. The flow through the porous oblate spheroid embedded in another porous medium is considered as the particular example of the deformed porous sphere embedded in another porous medium. The drag experienced by porous oblate spheroid in another porous medium is also evaluated. The dependence of drag coefficient and dimensionless shearing stress on the permeability parameter, viscosity ratio and deformation parameter for the porous oblate spheroid is presented graphically and discussed. Previous well-known results are then also deduced from the present analysis.  相似文献   

12.
A boundary element method is used to simulate the unsteady motion of a sphere falling under gravity along the centreline of a cylindrical tube containing a viscoelastic fluid. The fluid is modelled by the upper-convected Maxwell constitutive equation. Results show that the viscoelasticity of the liquid leads to a damped oscillation in sphere velocity about its terminal value. The maximum sphere velocity, which occurs in the first overshoot, is approximately proportional to the square root of the Weissenberg number when the ratio of the sphere radius to the tube radius is sufficiently small. Particular attention is also paid to the wall effects. It is shown that a closer wall reduces the oscillatory amplitude of the sphere velocity but increases its frequency. The results suggest that the falling-ball technique, which is now widely used for viscosity measurement, might also be used for the determination of a relaxation time for a viscoelastic fluid.  相似文献   

13.
Flow of a viscous fluid past a permeable sphere is investigated in the Stokes approximation. An example of such a flow is flow past a perforated or meshed spherical surface. The elements of the sphere contain rigid impermeable sections and openings through which the fluid can flow. The interaction of the sphere with the flow is described by two drag coefficients, which established the connection between the flow velocity of the fluid at the sphere and the stress tensor on it. The dependence of the flow pattern and also the drag and flow rate of the fluid on these coefficients is investigated. In special cases, the obtained solution describes flow past solid and liquid spheres.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 165–167, September–October, 1982.  相似文献   

14.
The results of calculation of accelerated flow of a fluid in a tube are compared with known experiments [1] in the laminar regime. The difference method was used to obtain a solution for unsteady axisymmetric flow that becomes steady over the length of the tube; this case was calculated earlier by Gromeka in the form of a series. An expression is derived for the coefficient of friction as a function of the Reynolds number Re and the acceleration of the fluid. The comparison reveals agreement between the results with an error not worse than 37%. However, the calculation gives a coefficient of friction proportional to Re to the power –1.5, whereas the experiment [1] reveals a weaker dependence proportional to Re to the power –1.15.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 158–160, September–October, 1981.  相似文献   

15.
A simple mathematical theory is proposed using the Brinkman model, for the analysis of the free convection motion in an unbounded porous medium, inducedby an instantaneous point heat source which is enveloped by a solid sphere. The theory consists of retaining only the leading terms of the series expansions of the dependent variables in terms of the Rayleigh number and is valid in the limit of small Rayleigh number only. The heat generating rate is assumed to be not excessive so that the induced flow is slow. The evolution of the flow field is demonstrated by drawing the streamlines at various times and the results are delineated by comparing them with those of the Darcy flow model. The significance of the presence of the enveloping solid sphere is highlighted.  相似文献   

16.
A liquid film falling between horizontal tubes is known to take the form of droplets, jets or sheets, depending on the liquid flow rate; the form of the flow is the so-called “falling-film mode”. Although previously neglected in studies of mode transition, a countercurrent gas flow often exists in falling-film heat exchangers, and its effect on the liquid flow might be important: it could impact the flow regime, lead to local “dryout,” and decrease the heat transfer rate. Experiments are conducted to explore the effects of a countercurrent gas flow and liquid feeding length on falling-film mode transitions for a liquid flowing over horizontal tubes. The effects on mode transition are shown to depend on fluid properties and are explained in terms of unsteadiness and film thickness. In general, transition hysteresis is reduced with an increasing gas velocity. A correlation is developed to predict the countercurrent gas flow effects on falling-film mode transitions. The liquid feeding length can affect mode transitions in quiescent surroundings and when a countercurrent gas flow imposed.  相似文献   

17.
The flow pattern induced by the settling of a non-Brownian sphere in a fluid depends on the rheological properties of that fluid. For instance, at small Reynolds numbers, the pattern presents a fore–aft symmetry in a Newtonian fluid, whereas, in some viscoelastic polymer solutions, it can exhibit a negative wake, i.e., an upward flow in the sphere’s wake. This study is an experimental work on the settling of a sphere in a suspension of a synthetic colloidal clay, laponite. The fluid is a yield stress fluid that ages, i.e., whose rheological properties evolve over time. We show that the settling velocity of a given sphere, as well as the induced flow pattern, are strongly modified as the fluid ages. In particular, the flow pattern asymmetry increases with the age of the fluid, and a negative wake eventually forms. We relate those modifications to rheological measurements and suggest, in line with works dealing with polymer solutions, that it is the increase in the fluid viscoelasticity that is responsible for the formation of a negative wake. The flow field measurements are also compared with flow-induced birefringence measurements, and we show that very slow relaxation processes are involved in the sphere settling.  相似文献   

18.
Viscous flow in a circular cylindrical tube containing an infinite line of rigid spheroidal particles equally spaced along the axis of the tube is considered for (a) uniform axial translation of the spheroids (b) flow past a line of stationary spheriods and (c) flow of the suspending fluid and spheroids under an imposed pressure gradient. The fluid is assumed to be incompressible and Newtonian. The Reynolds number is assumed to be small and the equations of creeping flow are used. Two types of solutions are developed: (i) an exact solution in the form of an infinite series which is valid for ratios of the spheroid diameter to the tube diameter up to 0.80, (ii) an approximate solution using lubrication theory which is valid for spheroids which nearly fill the tube. The drag on each spheroid and the pressure drop are computed for all cases. Both prolate and oblate spheroids are considered. The results show that the drag and pressure drop depend on the spheroidal diameter perpendicular to the axis of tube primarily and the effects of the spheroidal thickness and spacing are secondary. The results are of interest in connection with mechanics of capillary blood flow, sedimentation, fluidized beds, and fluid-solid transport.  相似文献   

19.
An investigation is made into the flow created by the helical, exponentially damped motion of a body of revolution in a viscous incompressible fluid stationary at points remote from the body. The forces exerted by the fluid on a body moving in this way are studied. It is shown that the induced flow is uniformly helical. The exposition is illustrated with reference to the example of the motion of a spherical surface. The exact and approximate (in the Stokes sense) solutions are compared. The classical results for the steady-state slow motions of a sphere (both translational and rotational) follow as particular cases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 47–52, March–April, 1985.  相似文献   

20.
Numerical solutions are presented for the flow past a sphere placed at the centreline of a cylindrical tube for Reynolds numbers ranging from 0 to 150, using a boundary element method. Fluids are modelled by a variety of constitutive equations including the Newtonian, the Carreau and the Phan-Thien-Tanner models. The influence of inertia, shear-thinning and fluid elasticity on the flow field, drag and the pressure drop force-drag ratio is examined. Some results are compared with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号