首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Photoinduced molecular rearrangements are important in daily events essential for life such as visual perception and photo-protection of light harvesting complexes in plants. In this study we demonstrate that similar photoarrangements appear in an analogous technological application where the device performance is controlled by chromophores in sensitized anatase TiO(2), one of the main components for light-harvesting in dye-sensitized solar cells (DSC). STM reveals that illumination leads to distortions of organic dyes containing conjugated backbones and of cis-bis(isothiocyanate)-bis-(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)-bis(tetrabutylammonium), known as N719. The dyes were adsorbed in a closed-packed mode on an anatase(101) single crystal surface and imaged in the dark and under white light illumination in an ultra-high vacuum (UHV). STM images of N719 clearly suggest rearrangements caused by rotation of the dye. Conversely, organic dyes rearrange by photoisomerization depending on the number of double bonds, their position in the molecular structure and on the ligand modifications.  相似文献   

2.
New heteroleptic ruthenium complexes have been synthesized and used as the sensitizers for dye‐sensitized solar cells (DSSCs). The ancillary bipyridine ligand contains rigid aromatic segments (fluorene‐, carbazole‐, or dithieno[3,2‐b:2′,3′‐d]pyrrole‐substituted bipyridine) tethered with a hydrophobic hexyl substituent. The conjugated aromatic segment results in significant bathochromic shift and hyperchromic effects in these complexes compared with Z907 (cis‐[Ru LL′ (NCS)2]; L =4,4′‐dicarboxylic acid‐2,2′‐bipyridine, L′ =4,4′‐dinonyl‐2,2′‐ bipyridine). The long hydrocarbon chains help to suppress the dark current if appropriately disposed. DSSCs that use these complexes exhibit very impressive conversion efficiencies (5.94 to 6.91 %) that surpass that of Z907 ‐based (6.36 %) DSSCs and are comparable with that of N719 ‐based standard cells (7.13 %; N719 =cis‐di(thiocyanato)bis(2,2′‐bipyridyl‐4,4′‐dicarboxylato)ruthenium(II) bis(tetrabutylammonium)) fabricated and measured under similar conditions (active area: 0.5×0.5 cm2; AM 1.5 sunlight).  相似文献   

3.
Heteroleptic Ru(II) complexes were designed based on 4,4′‐bis((E)‐styryl)‐2,2′‐bipyridine (bsbpy) as an ancillary ligand for dye‐sensitized solar cells (DSSCs), and those Ru(II) sensitizers, [Ru(L)(bsbpy)(NCS)2][TBA] (TBA; tetrabutylammonium), were synthesized according to a typical one‐pot reaction of [RuCl2(p‐cymene)]2 with the corresponding anchoring ligands (where L = 4,4′‐dicarboxy‐2,2′‐bipyridine (dcbpy), 4,4′‐bis((E)‐carboxyvinyl)‐2,2′‐bipyridine (dcvbpy), 4,7‐dicarboxy‐1,10‐phenanthroline (dcphen), or 4,7‐bis((E)‐carboxyvinyl)‐1,10‐phenanthroline (dcvphen)). The new Ru(II) dyes, [Ru(L)(bsbpy)(NCS)2][TBA] that incorporated vinyl spacer(s) into ancillary and/or anchoring ligand displayed red‐shifted bands over the overall UV/VIS region relative to the absorption spectra of N719 . A combination of bsbpy ancillary and dcphen anchoring ligand showed the best result for the overall power conversion efficiency (η); i.e., a DSSC fabricated with [Ru(dcphen)(bsbpy)(NCS)2][TBA] exhibited a power conversion efficiency (η) of 2.98% (compare to N719 , 4.82%).  相似文献   

4.
A dual colorimetric and luminescent sensor based on a heteroleptic ruthenium dye[Ru(Hipdpa)(Hdcbpy)(NCS)_2]~-·0.5H~+ 0.5[N(C_4H_9)_4]~+ Ru(Hipdpa) {where Hdcbpy = monodeprotonted-4,4'-dicarboxy-2.2'-bipyridineand Hipdpa = 4-(1H-imidazo[4,5-f][l,10]phenanthroIin-2-yl)-N,N-diphenylaniIine} for selective detection of Hg~(2+) is presented.The results of spectrophotometric titrations revealed an evident luminescence intensity enhancement(I/I_0 =11) and a considerable blue shift in visible absorption and luminescence maxima with the addition of Hg~(2+).The sensitive response of the optical sensor on Hg~(2+) was attributed to the binding of the electron-deficient Hg~(2+) to the electron-rich sulfur atom of the thiocyanate(NCS) ligand in the Ru(Hipdpa).which led to an increase in the energy gap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO).Accordingly,the blue shift in the absorption spectrum of Ru(Hipdpa) due to the binding of Hg~(2+) was obtained.Ru(Hipdpa) was found to have decreased Hg~(2+) detection limit and improved linear region as compared to di(tetrabutylammonium) ris-bis(isothiocyanato)bis(2,2'-bipyridine-4-carboxylic acid-4'-carboxylate)ruthenium(Ⅱ) N719.Moreover,a dramatic color change from pink to yellow was observed,which allowed simple monitoring of Hg~(2+) by either naked eyes or a simple colorimetric reader.Therefore,the proposed sensor can provide potential applications for Hg~(2+) detection.  相似文献   

5.
Electron-transfer quenching of tris(2,2-bipyridine)ruthenium(II) by methylviologen in an aqueous suspension of clay in the presence of poly(vinylpyrrolidone) was investigated. The quenching behavior of the excited tris(2,2-bipyridine)ruthenium(II) on clay by the coadsorbed methylviologen indicated the homogeneous distribution of the adsorbed dyes. The quenching rate was high when the clay with larger particle size was used as the host. The adsorption of poly(vinylpyrrolidone) on clay resulted in the coadsorption of the tris(2,2-bipyridine)ruthenium(II) and methylviologen without segregation.  相似文献   

6.
Han WS  Han JK  Kim HY  Choi MJ  Kang YS  Pac C  Kang SO 《Inorganic chemistry》2011,50(8):3271-3280
We prepared a series of new heteroleptic ruthenium(II) complexes, Ru(NCS)(2)LL' (3a-3e), where L is 4,4'-di(hydroxycarbonyl)-2,2'-bipyridine and L' is 4,4'-di(p-X-phenyl)-2,2'-pyridine (X = CN (a), F (b), H (c), OMe (d), and NMe(2) (e)), in an attempt to explore the structure-activity relationships in their photophysical and electrochemical behavior and in their performance in dye-sensitized solar cells (DSSCs). When substituent X is changed from electron-donating NMe(2) to electron-withdrawing CN, the absorption and emission maxima reveal systematic bathochromic shifts. The redox potentials of these dyes are also significantly influenced by X. The electronic properties of the dyes were theoretically analyzed using density functional theory calculations; the results show good correlations with the experimental results. The solar-cell performance of DSSCs based on dye-grafted nanocrystalline TiO(2) using 3a-3e and standard N3 (bis[(4,4'-carboxy-2,2'-bipyridine)(thiocyanato)]ruthenium(II)) were compared, revealing substantial dependences on the dye structures, particularly on the remote substituent X. The 3d-based device showed the best performance: η = 8.30%, J(SC) = 16.0 mA·cm(-2), V(OC) = 717 mV, and ff = 0.72. These values are better than N3-based device.  相似文献   

7.
Protons of N3, cis-bis(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II), were in situ exchanged on N3-loaded TiO2 films with alkali-metal, tetrabutylammonium, and guanidinium cations. This simple strategy improved the open-circuit photovoltage (V(oc)) significantly, resulting in enhancement of the power conversion efficiency by 10-25%. Electrochemical impedance spectra revealed that the in situ proton exchange of the N3-loaded film suppressed charge recombination between injected electrons and I(3-) ions in the electrolyte, which, together with the negative shift of the conduction band edge for TiO2, may account for the remarkably increased V(oc) upon proton exchange of N3.  相似文献   

8.
We have developed and optimized a well-controlled and refined methodology for the synthesis of substituted π-conjugated 4,4'-styryl-2,2'-bipyridine ligands and also adapted the tris(heteroleptic) synthetic approach developed by Mann and co-workers to produce two new representative Ru(II)-based complexes bearing the metal oxide surface-anchoring precursor 4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine. The two targeted Ru(II) complexes, (4,4'-dimethyl-2,2'-bipyridine)(4,4'-di-tert-butyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dtbbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (1) and (4,4'-dimethyl-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dnbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (2) were obtained as analytically pure compounds in high overall yields (>50% after 5 steps) and were isolated without significant purification effort. In these tris(heteroleptic) molecules, NMR-based structural characterization became nontrivial as the coordinated ligand sets each sense profoundly distinct magnetic environments greatly complicating traditional 1D spectra. However, rational two-dimensional approaches based on both homo- and heteronuclear couplings were readily applied to these structures producing quite definitive analytical characterization and the associated methodology is described in detail. Preliminary photoluminescence and photochemical characterization of 1 and 2 strongly suggests that both molecules are energetically and kinetically suitable to serve as sensitizers in energy-relevant applications.  相似文献   

9.
Solar cells based on swift self-assembled sensitizer bis(tetrabutylammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenium(II) (N719) on double layers of 12 + 4 microm thick nanocrystalline TiO2 films exhibit the incident monochromatic photon-to-current conversion efficiency (IPCE) 90% and show a short circuit current density of 17 mA cm(-2), 750 mV open circuit potential and 0.72 fill factor yielding power conversion efficiencies over 9.18% under AM 1.5 sun. For the first time highest power conversion efficiencies are obtained for dye sensitized solar cells using a swift self-assembled procedure.  相似文献   

10.
Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to NcSn. These results demonstrate that photoexcited electrons can be effectively injected into SnO(2) from both of the N719 and NcSn dyes.  相似文献   

11.
A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.  相似文献   

12.
Reduction of allyl halides to 1,5-hexadiene at glassy carbon electrodes was catalyzed by tris(2,2'-bipyridyl) cobalt(II) and tris(4,4'-dimethyl-2,2'-bipyridyl)cobalt(II) in aqueous solutions of 0.1 M SDS or 0.1 M CTAB. An organocobalt(I) intermediate was observed by its separate voltammetric reduction peak in each system studied. This intermediate undergoes an internal redox reaction to form 1,5-hexadiene and Co(II). Small micellar enhancements of reaction rates found for tris(2,2'-bipyridyl) cobalt(II) in 0.1 M CTAB can be attributed to reactant compartmentalization in the micelles. Observed chemical rates followed the order CTAB > SDS = acetonitrile. For tris(4,4'-dimethyl-2,2'-bi-pyridyl) Co(II) in CTAB, catalysis was limited by adsorption of the Co(I) form at the electrode. Preliminary work with bis(2,2'-bipyridyl)-(4,4'-dihexadecyl-2,2'-bipyridyl)cobalt(II) showed that its catalytic utility in 0.1 M SDS was equivalent to that of the most efficient system studied, i.e. tris(2,2'-bipyridyl)Co(II) in 0.1 M CTAB.  相似文献   

13.
A high molar extinction coefficient charge transfer sensitizer tetrabutylammonium [Ru(4,-carboxylic acid-4′-carboxylate-2,2′-bipyridine)(4,4′-di-(2-(3,6-dimethoxyphenyl)ethenyl)-2,2′-bipyridine)(NCS)2], is developed which upon anchoring onto nanocrystalline TiO2 films exhibit superior power conversion efficiency compared to the standard sensitizer bistetrabutylammonium cis-dithiocyanatobis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) (N719). The new sensitizer anchored TiO2 films harvest visible light very efficiently over a large spectral range and produce a short-circuit photocurrent density of 18.84 mA/cm2, open-circuit voltage 783 mV and fill factor 0.73, resulting remarkable solar-to-electric energy conversion efficiency (η) 10.82, under Air Mass (AM) 1.5 sunlight. The Time Dependent Density Functional Theory (TDDFT) excited state calculations of the new sensitizer show that the first three HOMOs have ruthenium t2g character with sizable contribution coming from the NCS ligands and the π-bonding orbitals of the 4,4′-di-(2-(3,6-dimethoxyphenyl)ethenyl)-2,2′-bipyridine. The LUMO is a π* orbital localized on the 4,4′-dicarboxylic acid-2,2′-bipyridine ligand.  相似文献   

14.
We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ~60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide bandgap inorganic materials for battery and sensing applications.  相似文献   

15.
A new series of panchromatic ruthenium(II) sensitizers derived from carboxylated terpyridyl complexes of tris-thiocyanato Ru(II) have been developed. Black dye containing different degrees of protonation [(C(2)H(5))(3)NH][Ru(H(3)tcterpy)(NCS)(3)] 1, [(C(4)H(9))(4)N](2)[Ru(H(2)tcterpy)(NCS)(3)] 2, [(C(4)H(9))(4)N](3)[Ru(Htcterpy)(NCS)(3)] 3, and [(C(4)H(9))(4)N](4)[Ru(tcterpy)(NCS)(3)] 4 (tcterpy = 4,4',4' '-tricarboxy-2,2':6',2' '-terpyridine) have been synthesized and fully characterized by UV-vis, emission, IR, Raman, NMR, cyclic voltammetry, and X-ray diffraction studies. The crystal structure of complex 2 confirms the presence of a Ru(II)N6 central core derived from the terpyridine ligand and three N-bonded thiocyanates. Intermolecular H-bonding between carboxylates on neighboring terpyridines gives rise to 2-D H-bonded arrays. The absorption and emission maxima of the black dye show a bathochromic shift with decreasing pH and exhibit pH-dependent excited-state lifetimes. The red-shift of the emission maxima is due to better pi-acceptor properties of the acid form that lowers the energy of the CT excited state. The low-energy metal-to-ligand charge-transfer absorption band showed marked solvatochromism due to the presence of thiocyanate ligands. The Ru(II)/(III) oxidation potential of the black dye and the ligand-based reduction potential shifted cathodically with decreasing number of protons and showed more reversible character. The adsorption of complex 3 from methoxyacetonitrile solution onto transparent TiO(2) films was interpreted by a Langmuir isotherm yielding an adsorption equilibrium constant, K(ads), of (1.0 +/- 0.3) x 10(5) M(-1). The amount of dye adsorbed at monolayer saturation was (n(alpha) = 6.9 +/- 0.3) x 10(-)(8) mol/mg of TiO(2), which is around 30% less than that of the cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complex. The black dye, when anchored to nanocrystalline TiO(2) films achieves very efficient sensitization over the whole visible range extending into the near-IR region up to 920 nm, yielding over 80% incident photon-to-current efficiencies (IPCE). Solar cells containing the black dye were subjected to analysis by a photovoltaic calibration laboratory (NREL, U.S.A.) to determine their solar-to-electric conversion efficiency under standard AM 1.5 sunlight. A short circuit photocurrent density obtained was 20.5 mA/cm(2), and the open circuit voltage was 0.72 V corresponding to an overall conversion efficiency of 10.4%.  相似文献   

16.
Ruthenium polypyridyl complexes have seen extensive use in solar energy applications. One of the most efficient dye-sensitized solar cells produced to date employs the dye-sensitizer N719, a ruthenium polypyridyl thiocyanate complex. Thiocyanate complexes are typically present as an inseparable mixture of N-bound and S-bound linkage isomers. Here we report the synthesis of a new complex, [Ru(terpy)(tbbpy)SCN][SbF(6)] (terpy = 2,2';6',2'-terpyridine, tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), as a mixture of N-bound and S-bound thiocyanate linkage isomers that can be separated based on their relative solubility in ethanol. Both isomers have been characterized spectroscopically and by X-ray crystallography. At elevated temperatures the isomers equilibrate, the product being significantly enriched in the more thermodynamically stable N-bound form. Density functional theory analysis supports our experimental observation that the N-bound isomer is thermodynamically preferred, and provides insight into the isomerization mechanism.  相似文献   

17.
Charge transfer dynamics between an adsorbed molecule and a rutile TiO(2)(110) surface have been investigated in three organometallic dyes related to multicenter water splitting dye complexes: Ru 535 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)), Ru 455 (cis-bis(2,2'-bipyridyl)-(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)), and Ru 470 (tris(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)). The adsorption of the dye molecules on the rutile TiO(2)(110) surface has been studied using core-level and valence photoemission. Dye molecules were deposited in situ using ultrahigh vacuum electrospray deposition. Core-level photoemission spectra reveal that each complex bonds to the surface via deprotonation of two carboxylic groups. All three dye complexes show evidence of ultrafast charge transfer to the TiO(2) substrate using the core-hole clock implementation of resonant photoemission spectroscopy.  相似文献   

18.
Novel nanostructured materials, such as aluminum oxide (AlOOH), silicon oxide (SiO2) or zirconium oxide (ZrO2) embedded into PVA, were investigated as potential matrices to incorporate organometallic compounds (OMCs) for the development of optical oxygen-sensitive sensors which make use of the principle of luminescence quenching.In order to assess the benefits and drawbacks of the nanoporous material, the luminescence quantum yield and the Stern-Volmer constants were investigated and compared with the values shown for the same OMCs solubilized in polymer films (polystyrene). Referred to polymer films, the incorporation of the dyes into nanoporous membranes increased the Stern-Volmer constant by more than a factor of 100. Their response time was less than 1 s and the optode membranes were stable at room temperature for at least 9 months. Sterilization by autoclavation and gamma irradiation resulted in a marginal loss in activity. The photostability and sterilizability of the oxygen-sensitive membranes and the performance of the optodes with respect to of different types of metal oxides are discussed in the paper, as well as the influence of the total pore volume (TPV), the pore diameter (PD), the transparency of the film and the geometry of the pores. The OMCs used in this work were: ETHT-3003 (tris(4,7-bis(4-octylphenyl)-1,10-phenanthroline) ruthenium(II)), N-926 (bis(2-phenylpyridinyl)-N4,N4,N4′,N4′-tetramethyl-(4,4′-diamine-2,2′-bipyridine) iridium(III) chlorate), N-833 (tetrabutylammonium bis(isothiocyanate) bis(2-phenylpyridinyl)-iridium(III)) and N-837 (tetrabutylammonium bis(cyanate) bis(2-phenylpyridinyl)-iridium(III)).  相似文献   

19.
Two new heteroleptic ruthenium(II) photosensitizers that contains 2,2';6,2'-terpyridine with extended π-conjugation with donor groups, a 4,4'-dicarboxylic acid-2,2'-bipyridine anchoring ligand and a thiocyanate ligand have been designed, synthesized and fully characterized by CHN, mass spectrometry, UV-vis and fluorescence spectroscopies and cyclic voltammetry. The new sensitizers have either 3,5-di-tert-butyl phenyl (m-BL-5) or triphenylamine (m-BL-6) groups, where the molar extinction coefficient of both the sensitizers is higher than the analogous ruthenium dyes. Both the sensitizers were tested in dye-sensitized solar cells using two different redox electrolytes.  相似文献   

20.
Two series of photosensitizer-electron acceptor complexes have been synthesized and fully characterized: ruthenium(II) tris(bipyridine) ([Ru(II)(bpy)(2)(bpy-X-NDI)], where X = -CH(2)-, tolylene, or phenylene, bpy is 2,2'-bipyridine, and NDI is naphthalenediimide) and ruthenium(II) bis(terpyridine) ([Ru(II)(Y-tpy)(tpy-X-NDI)], where Y = H or tolyl and X = tolylene or phenylene, and tpy = 2,2':6',2' '-terpyridine). The complexes have been studied by cyclic and differential pulse voltammetry and by steady state and time-resolved absorption and emission techniques. Rates for forward and backward electron transfer have been investigated, following photoexcitation of the ruthenium(II) polypyridine moiety. The terpyridine complexes were only marginally affected by the linked diimide unit, and no electron transfer was observed. In the bipyridine complexes we achieved efficient charge separation. For the complexes containing a phenyl link between the ruthenium(II) and diimide moieties, our results suggest a biphasic forward electron-transfer reaction, in which 20% of the charge-separated state was formed via population of the naphthalenediimide triplet state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号