首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
The adsorption of dibenzothiophene (DBT) in hexadecane onto NaY zeolite has been studied by performing equilibrium and kinetic adsorption experiments. The influence of several variables such as contact time, initial concentration of DBT and temperature on the adsorption has been investigated. The results show that the isothermal equilibrium can be represented by the Langmuir equation. The maximum adsorption capacity at different temperatures and the corresponding Langmuir constant (K L ) have been deduced. The thermodynamic parameters (ΔG 0H 0S 0) for the adsorption of DBT have also been calculated from the temperature dependence of K L using the van’t Hoff equation. The value of ΔH 0S 0 are found to be −30.3 kJ mol−1 and −33.2 J mol−1 K−1 respectively. The adsorption is spontaneous and exothermic. The kinetics for the adsorption process can be described by either the Langmuir model or a pseudo-second-order model. It is found that the adsorption capacity and the initial rate of adsorption are dependent on contact time, temperature and the initial DBT concentration. The low apparent activation energy (12.4 kJ mol−1) indicates that adsorption has a low potential barrier suggesting a mass transfer controlled process. In addition, the competitive adsorption between DBT, naphthalene and quinoline on NaY was also investigated.  相似文献   

2.
Rice husk, an agricultural waste product, was studied as a potential decontaminant for chromium in the effluents of leather tanning industries. Physico-chemical parameters such as selection of appropriate electrolyte, shaking time, concentration of adsorbent and adsorbate were studied to optimize the best conditions in which this material can be utilized on commercial scale for the decontamination of effluents. The radiotracer technique was used to determine the distribution of chromium. In certain cases atomic absorption spectrophotometry was also employed. Maximum adsorption was observed at 0.01 mol·dm−3 acid solutions (HNO3, HCl, H2SO4 and HClO4) using 3.0 g of adsorbent for 2.73·10−3 mol·dm−3 chromium concentration in five minutes equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all the acids. The adsorption data follows the Freundlich isotherm over the range of 2.73·10−3 to 2.73·10−2 mol·dm−3 chromium concentration. The characteristic Freundlich constants, i.e., 1/n=0.86±0.06 andA=2.35±0.06 mmol·g−1 have been computed for the sorption system. Thermodynamic parameters, i.e., ΔG 0, ΔS 0 and ΔH 0 have also been calculated for the system. Application of the method to a test case of a medium size industry showed that 21 kg of rice husk was sufficient to maintain the NEQS limits of chromium for industrial effluents.  相似文献   

3.
The nature of adsorption behavior of Au(III) on polyurethane (PUR) foam was studied in 0.2M HCl aqueous solution. The effect of shaking time and amount of adsorbent were optimized for 3.16·10−5M solution of Au(III) in 0.2M HCl. The classical Freundlich and Langmuir adsorption isotherms have been employed successfully. The Freundlich parameters 1/n and adsorption capacityK are 0.488±0.016 and (1.40±0.22)·10−2 mol·g−1, respectively. The Langmuir constants of saturation capacityM and binding energyb are (1.66±0.08)·10−4mol·g−1 and 40294±2947 l·g−1, respectively, indicating the monolayer chemical sorption. The mean free energy (E) of adsorption of Au(III) on PUR foam has been evaluated using D-R isotherm and found to be 11.5±0.16 kJ·mol−1 reflecting the ion exchange type of chemical adsorption. The effect of temperature on the adsorption has also been studied. the isosteric heat of adsorption was found to be 44.03±1.66 kJ·mol−1. The thermodynamic parameters of ΔG, ΔH, ΔS and equilibrium constantK c have been calculated. The negative values of ΔG, ΔH and ΔS support that the adsorption of Au(III) on PUR foam is spontaneous, exothermic and of ion exchange chemisorption. The nature of the Au(III) species sorbed on PUR foam have been discussed.  相似文献   

4.
Adsorption of vanadium(V) from aqueous solution onto ZnCl2 activated carbon developed from coconut coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, vanadium concentration, adsorbent dose, pH and temperature has been studied. First, second order, Elovich and Bangham’s models were used to study the adsorption kinetics. The adsorption system follows second order and Bangham’s kinetic models. Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms have been employed to analyze the adsorption equilibrium data. Equilibrium adsorption data followed all the four isotherms—Langmuir, Freundlich, D-R and Temkin. The Langmuir adsorption capacity (Q 0) was found to be 24.9 mg g− 1 of the adsorbent. The per cent adsorption was maximum in the pH range 4.0–9.0. The pH effect and desorption studies showed that ion exchange mechanism might be involved in the adsorption process. Thermodynamic parameters such as ΔG 0, ΔH 0 and ΔS 0 for the adsorption were evaluated. Effect of competitive anions in the aqueous solution such as PO4 3 −, SO4 2−, ClO4 , MoO4 2−, SeO3 2−, NO3 and Cl was examined. SEM and FTIR were used to study the surface of vanadium(V) loaded ZnCl2 activated carbon. Removal of vanadium(V) from synthetic ground water was also tested. Results show that ZnCl2 activated coir pith carbon is effective for the removal of vanadium(V) from water.  相似文献   

5.
Mercury-mercury (II) sulphide electrode has been prepared and its electrochemical and thermodynamic behaviour has been studied in different media. The electrode is found to show Nernstian response to pS (− log [S2−]) over the range 5.19–10.38. In the pH range 7.96–11.98, at constant [S2−]v, its response is also Nernstian. The values of thermodynamic functions, viz., ΔG0. ΔH0, and ΔS0 for the electrode reaction: Hg(3)+S2− ⇌HgS(s)+2e, have been determined. Further, the standard free energy of formation (ΔG f 0 ) and solubility product constant (K vp ) of HgS in aqueous medium at 25±0.1°C have also been determined.  相似文献   

6.
Modified Sorrel’s cement was prepared by the addition of ferric chloride. The modified cement (MF5) was analyzed and characterized by different methods. Adsorption of Gd(III) and U(VI) ions in carbonate solution has been studied separately as a function of pH, contact time, adsorbent weight, carbonate concentration, concentration of Gd(III) and U(VI) and temperature. From equilibrium data obtained, the values of Δ H, Δ S and Δ G were found to equal −30.9 kJ ⋅ mol−1, −85.4 J ⋅ mol−1 ⋅,K−1, and −5.4 KJ ⋅ mol−1, respectively, for Gd(III) and 18.9 kJ ⋅ mol−1, 67.8 J ⋅ mol−1 K−1 and −1.3 KJ ⋅ mol−1, respectively, for U(VI). The equilibrium data obtained have been found to fit both Langmuir and Freundlich adsorption isotherms. The batch kinetic of Gd(III) and U(VI) on modified Sorrel’s cement (MF5) with the thermodynamic parameters from carbonate solution were studied to explain the mechanistic aspects of the adsorption process. Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the adsorption process. Various parameters such as effective diffusion coefficient and activation energy of activation were evaluated. The adsorption of Gd(III) and U(VI) on the MF5 adsorbent follows first-order reversible kinetics. The forward and backward constants for adsorption, k 1and k 2 have been calculated at different temperatures between 10 and 60C. Form kinetic study, the values of Δ H * and Δ S * were calculated for Gd(III) and U(VI) at 25C. It is found that Δ H * equals −14.8 kJmol−1 and 7.2 kJmol−1 for Gd(III) and U(VI), respectively, while Δ S * were found equal −95.7 Jmol−1K−1 and −70.5 Jmol−1K−1 for Gd(III) and U(VI), respectively. The study showed that the pore diffusion is the rate limiting for Gd(III) and (VI).  相似文献   

7.
Carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger with diameter in the range of 20–40 nm, length in the range of 100–150 μm and particle size in the range of 21–38 nm have been successfully prepared by surfactant assisted sol–gel method. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, fourier transform infra red spectroscopy and thermogravimetric analysis-differential thermal analysis studies were carried out to study the structure and morphology of this composite nano-rod like cation exchanger. Freundlich adsorption isotherm is well fitted for the adsorption of pyridine on the surface of this composite nano-rod like cation exchanger. The thermodynamic parameters such as Freundlich constant, thermodynamic equilibrium constant (K 0), standard free energy changes (ΔG 0), standard enthalpy changes (ΔH 0) and standard entropy changes (ΔS 0) have been evaluated. These parameters indicated that the adsorption of pyridine on the surface of composite nano-rod like cation exchanger was feasible, spontaneous and exothermic in nature which suggests for the potential application of pyridine removal from water.  相似文献   

8.
Ulva sp. and sepiolite were used to prepare composite adsorbent. The adsorption of uranium(VI) from aqueous solutions onto Ulva sp.-sepiolite has been studied by using a batch adsorber. The parameters that affect the uranium(VI) adsorption, such as solution pH, initial uranium(VI) concentration, and temperature, have been investigated and the optimum conditions determined. The adsorption patterns of uranium on the composite adsorbent followed the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models have been applied and the data correlate well with Freundlich model. The sorption is physical in nature (sorption energy, E = 4.01 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK d vs. 1/T plots. Thermodynamic parameters (ΔH ads = −22.17 kJ/mol, ΔS ads = −17.47 J/mol·K, ΔG o ads (298.15 K) = −16.96 kJ/mol) show the exothermic heat of adsorption and the feasibility of the process. The results suggested that the Ulva sp-sepiolite composite adsorbent is suitable as a sorbent material for recovery and biosorption/adsorption of uranium ions from aqueous solutions.  相似文献   

9.
The critical micelle concentration (CMC) of surfactant–Cr(III)–dodecylamine complexes of the type cis-α-[Cr(trien)(C12H25NH2)X]2+ (where trien = triethylenetetramine; X = F, Cl, Br) has been studied in n-alcohol and in formamide at different temperatures, by electrical conductivity measurements. From the CMC values as a function of temperature, various thermodynamic properties have been evaluated: standard Gibbs energy changes (Δmic G 0), standard enthalpy changes (Δmic H 0) and standard entropy changes (Δmic S 0) for micellization. Critical micelle concentrations have also been measured as a function of the percentage composition of alcohol added. The solvent composition dependences of these thermodynamic parameters were determined. It is suggested that alcohol addition leads to an increase in formamide penetration into the micellar interface that depends on the alcohol’s chain length. The results are discussed in terms of an increased hydrophobic effect, dielectric constant of the medium, the chain length of the alcohols, and the surfactant in the solvent mixture.  相似文献   

10.
The adsorption processes of three aromatic chemicals onto activated carbons (ACs) from aqueous solutions have been studied. Eucalyptus kraft lignin obtained from cellulose industry as a residual biomass has been used to prepare activated carbons by physical activation with CO2. The influences of the activation time on the surface areas and pore volumes of the ACs were analyzed. The physicochemical properties and the surface chemical structure of the adsorbents have been studied by means of N2 and CO2 adsorption, ultimate analysis, XPS, TPD and SEM. XPS and TPD spectra of the ACs have suggested the presence of aromatic rings and carbon-oxygen functional groups in the solid surfaces. The potential use of the ACs for the removal of acetaminophen (paracetamol), salicylic acid and benzoic acid has been investigated at different pH, temperature and contact time. The adsorption equilibrium data have been correlated to Langmuir isotherm model. The thermodynamic study has been developed, the values of ΔH, ΔG, and ΔS have been calculated and they indicated that the processes are endothermic for acetaminophen and exothermic for salicylic and benzoic acids. The analysis of the kinetic experiments showed that the effective diffusivities are low; 10−12 to 10−11 cm2/s, and they are the corresponding to intraparticle mass transfer, which appears as the controlling step for the net adsorption processes.  相似文献   

11.
The formation of mixed-ligand complexes HgEdtaIm2−, HgEdtaL3−, HgEdtaHL2−, and (HgEdta)2L5− (L is histidine, lysine; Im is imidazole) was studied by calorimetry, pH-metry, and NMR spectroscopy. The thermodynamic parameters (logK, ΔrG 0, ΔrH, Δr S) for the reactions of complex formation at 298.15 K and ion strength of 0.5 (KNO3) were determined. The most likely coordination mode for the complexone and amino acid in the mixed complexes was identified.  相似文献   

12.
The effect of cosolvent on micellization of hexadecyltrimethyl ammonium bromide (CTAB) in aqueous solutions was studied. The conductivity of a mixture (cosolvent + water) as function of CTAB concentration was measured at different temperatures. Ethylene glycol and ethanol were used as a cosolvent. The conductivity data were used to determine the critical micelle concentration (CMC) and the effective degree of counterion dissociation of micelle in the temperature range 303.2 to 313.2 K. In all the cases studied, a linear relationship between log([CMC]mix/mol dm−3) and the mass fraction of cosolvent in solvent mixture has been observed. The free energy (ΔG mic 0 ), enthalpy (ΔH mic 0 ), and entropy (ΔS mic 0 ) of micellization were determined using the temperature dependence of CMC. The dependence of these thermodynamic parameters on solvent composition was determined. The standard free energy of micellization was found to be negative in all cases and becomes less negative as the cosolvent content increases. The enthalpy and entropy of micellization are independent of temperature in pure water, while ΔH mic 0 and ΔS mic 0 decrease dramatically with temperature in mixed cosolvents. Furthermore, the entropic contribution is larger than the enthalpic one in pure water, while in the mixed solvents, the enthalpic contribution predominates. The text was submitted by the authors in English.  相似文献   

13.
Mixed-ligand complexation of yttrium subgroup lanthanide ethylenediaminetetraacetates with asparaginate, iminodiacetate, and nitrilotriacetate ions in aqueous solution was studied by calorimetry and pH-metry. The full set of thermodynamic parameters (logK, Δ r G 0, Δ r H, Δ r S) of the addition reactions of Asp2−, Ida2−, and Nta3− to LnEdta (Ln3+ = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) was determined at 298.15 K and ionic strength I = 0.5(KNO3). The change in the thermodynamic parameters of the reactions over the series of lanthanides was discussed.  相似文献   

14.
The applicability of zirconium phosphate-ammonium molybdophosphate (ZrP-AMP) for the efficient removal of cesium from aqueous acidic solutions by adsorption has been investigated. The adsorption data analysis was carried out using the Freundlich, Dubinin-Raduskevich (D-R) and Langmuir isotherms for the uptake of Cs in the initial concentration range of 3.75.10-5-7.52.10-3 mol.dm-3 on the ZrP-AMP exchanger from nitric acid medium. The mean free energy (E) values for the adsorption of Cs were obtained from the D-R isotherm. Equilibrium adsorption values at different temperatures have been utilized to evaluate the change in enthalpy, entropy and free energy (ΔH°, ΔS°, ΔG°). The adsorption of cesium on the ZrP-AMP exchanger was found to be endothermic. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
In this study, the removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions using the adsorption process onto natural bentonite has been investigated as a function of initial metal concentration, pH and temperature. In order to find out the effect of temperature on adsorption, the experiments were conducted at 20, 50, 75 and 90 °C. For all the metal cations studied, the maximum adsorption was observed at 20 °C. The batch method has been employed using initial metal concentrations in solution ranging from 15 to 70 mg L−1 at pH 3.0, 5.0, 7.0 and 9.0. A flame atomic absorption spectrometer was used for measuring the heavy metal concentrations before and after adsorption. The percentage adsorption and distribution coefficients (K d) were determined for the adsorption system as a function of adsorbate concentration. In the ion exchange evaluation part of the study, it is determined that in every concentration range, adsorption ratios of bentonitic clay-heavy metal cations match to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) adsorption isotherm data, adding to that every cation exchange capacity of metals has been calculated. It is shown that the bentonite is sensitive to pH changes, so that the amounts of heavy metal cations adsorbed increase as pH increase in adsorbent-adsorbate system. It is evident that the adsorption phenomena depend on the surface charge density of adsorbent and hydrated ion diameter depending upon the solution pH. According to the adsorption equilibrium studies, the selectivity order can be given as Zn2+>Cu2+>Co2+. These results show that bentonitic clay hold great potential to remove the relevant heavy metal cations from industrial wastewater. Also, from the results of the thermodynamic analysis, standard free energy ΔG 0, standard enthalpy ΔH 0 and standard entropy ΔS 0 of the adsorption process were calculated.  相似文献   

16.
Polymorphism of paracetamol   总被引:1,自引:0,他引:1  
The thermodynamic relationship between crystal modifications of paracetamol was studied by alternative methods. Temperature dependence of saturated vapor pressure for polymorphic modifications of the drug paracetamol (acetaminophen) was mea sured and thermodynamic functions of the sublimation process calculated. Solution calorimetry was carried out for the two modifications in the same solvent. Thermodynamic parameters for sublimation for form I (monoclinic) were found: ΔG sub298=60.0 kJ mol−1; ΔH sub298=117.9±0.7 kJ mol−1; ΔS sub298=190±2 J mol−1 K−1. For the orthorhombic modification (form II), the saturated vapor pressure could only be studied at 391 K. Phase transition enthalpy at 298 K, ΔH tr298(I→II)=2.0±0.4 kJ mol−1, was derived as the difference between the solution enthalpies of the noted polymorphs in the same solution (methanol). Based on ΔH tr298 (I→II), differences between temperature dependencies of heat capacities of both modifications and the vapor pressure value of form II at 391 K, the temperature dependence of saturated vapor pressure and thermodynamic sublimation parameters for modification II were also estimated (ΔG sub298=56.1 kJ mol−1; ΔH sub298=115.9±0.9 kJ mol−1; ΔS sub298=200±3 J mol−1 K−1). The results indicate that the modifications are monotropically related, which is in contrast to findings recently reported found by classical thermochemical methods.  相似文献   

17.
The temperature dependency of the saturated vapor pressure of Ir(acac)3 has been measured by the method of calibrated volume (MCV), the Knudsen method, the flow transpiration method, and the membrane method. The thermodynamic parameters of phase transition of a crystal to gas were calculated using each of these methods, and the following values of ΔH T 0 (kJ mol−1) and ΔS T 0 (J mol−1K−1), respectively, were obtained: MCV: 101.59, 156.70; Knudsen: 130.54, 224.40; Flow transpiration: 129.34, 212.23; Membrane: 95.45, 149.44 Coprocessing of obtaining data (MCV, flow transportation method and Knudsen method) at temperature ranges 110−200°C as also conducted:ΔH T 0 =127.9±2.1 (kJ mol−1 ); ΔS T 0 =215.2±5.0 (J mol−1 K−1 ). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Titanium dioxide nanoparticles were employed for the sorption of Ge(IV) ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption process was found to be fast, equilibrium was reached within 3 min. A maximum sorption could be achieved from solution when the pH ranges between 4.0 and 11.0. Sorbed Ge(IV) ions can be completely desorbed with 2 mL of 0.3 mol L−1 K3PO4-1.0 mol L−1 H2SO4 mixture solution. The kinetic experimental data properly correlate with the second-order kinetic model (k 2 = 0.88 g mg−1 min−1 (25°C)), Reichenberg equation and Morris-Weber model. The estimated E a for Ge(IV) adsorption on nano-TiO2 was 19.66 kJ mol−1. The overall rate process appears to be influenced by intra-particle diffusion. The sorption data could be well interpreted with the Langmuir and Dubinin-Radushkevich (D-R) type sorption isotherms. The D-R parameters were calculated to be K = −0.00321 mol2 kJ−2, q m = 0.59 mmol g−1 and E = 12.48 kJ mol−1 at room temperature. Furthermore, the thermodynamic parameters were also determined, and the ΔH 0 and ΔG 0 values indicated a spontaneous exothermic behavior.  相似文献   

19.
The effect on polyurethane foam (PUF) of washing with different concentrations of HCl (1, 3, 6, or 11.8 M) has been studied. After washing, PUF was characterized by use of different techniques. The adsorption properties of PUF and its chromatographic behavior in the separation and preconcentration of gold from thiocyanate solution were investigated by batch and dynamic processes. Uptake of Au(III) was maximum after washing with 0.05–0.2 M HCl. The kinetics of adsorption of the Au(III) were found to be rapid; the average half-live of adsorption (t 1/2) was 60 s. Average values of the thermodynamic quantities ΔH and ΔG were −40.7 and −5.9 kJ mol−1, respectively. These data indicate that adsorption of Au(III) by white PUF proceeds via both weak anion exchange and an ion-association mechanism. PUF was verified as a good adsorbent by determination of Au(III) in spring water and in gold alloy samples.  相似文献   

20.
Multiwalled carbon nanotubes-polymeric alizarin film modified electrode was made. The electrochemical behavior of levofloxacin hydrochloride on modified electrode was studied with cyclic voltammetry, linear sweep voltammetry and chronopotentiometry. The results indicated that the electrical oxidation of levofloxacin hydrochloride on MWNT-PAR electrode, in HAc-NaAc buffer solution at pH 4.2 was irreversible and was controlled by diffusion. Some important parameters m, n, D, E D, ΔS rc and ΔH rc of the electrochemical process were evaluated. Good linearity relationship between peak current and its concentration in the range of 5.0 × 10−6–1.0 × 10−4 mol l−1 was found, of which the equation was I p(A) = −5.456 × 10−6 0.2667c, the correlative coefficient r = −0.9976 and detect limitation was 4.0 × 10−7 mol l−1. The recovery of levofloxacin hydrochloride in levofloxacin hydrochloride injection was between 94.6 and 104.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号