首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We discuss a scenario that gravitinos produced non-thermally by an inflaton decay constitute dark matter in the present universe. We find that this scenario is realized for wide ranges of the inflaton mass and the vacuum expectation value. What is intriguing about this scenario is that the gravitino dark matter can have a relatively large free streaming length at matter-radiation equality, which can be probed by future observation on QSO-galaxy strong lens system.  相似文献   

2.
Within the framework of an explicit dynamical model, in which we calculate the radiatively-corrected, tree-level potential that sets up inflation, we show that the inflaton can be a significant part of dark matter today. We exhibit potentials with both a maximum and a minimum. Using the calculated position of the potential minimum, and an estimate for fluctuations of the inflaton field in the early universe, we calculate a contribution to the matter energy density of in the present universe, from cold inflatons with mass of about . We show that the inflaton might decay in a specific way, and we calculate a possible lifetime that is several orders of magnitude greater than the present age of the universe. Inflaton decay is related to an interaction which, together with a spontaneous breakdown of CP invariance at a cosmological energy scale, can give rise to a neutrino-antineutrino asymmetry just prior to the time of electroweak symmetry breaking. Received: 26 November 1997 / Revised version: 8 December 1997 / Published online: 24 March 1998  相似文献   

3.
We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.  相似文献   

4.
5.
Considering a separable and purely kinetic 5D scalar field we investigate the induction of 4D scalar potentials on a 4D constant foliation on the class of 5D warped product space-times. We obtain a quantum confinement of the inflaton modes given naturally from the model for at least a class of warping factors. We can recover a 4D inflationary scenario where the inflationary potential is geometrically induced from 5D and the effective equation of state in 4D that includes the effect of the inflaton field and the induced matter is Peff≃-ρeff. PACS 04.20.Jb; 11.10.kk; 98.80.Cq  相似文献   

6.
We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton number through the gravitational anomaly in the lepton number current. The source term comes from elliptically polarized gravity waves that are produced during inflation if the inflaton field contains a CP-odd component. The amount of matter asymmetry generated in our model can be of realistic size for the parameters within the range of some inflationary scenarios and grand unified theories.  相似文献   

7.
We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However, reheating is problematic in this model. On leave from Jamia Millia Islamia, New Delhi 110 025, India  相似文献   

8.
We review the particle theory origin of inflation and curvaton mechanisms for generating large scale structures and the observed temperature anisotropy in the cosmic microwave background (CMB) radiation. Since inflaton or curvaton energy density creates all matter, it is important to understand the process of reheating and preheating into the relevant degrees of freedom required for the success of Big Bang Nucleosynthesis. We discuss two distinct classes of models, one where inflaton and curvaton belong to the hidden sector, which are coupled to the Standard Model gauge sector very weakly. There is another class of models of inflaton and curvaton, which are embedded within Minimal Supersymmetric Standard Model (MSSM) gauge group and beyond, and whose origins lie within gauge invariant combinations of supersymmetric quarks and leptons. Their masses and couplings are all well motivated from low energy physics, therefore such models provide us with a unique opportunity that they can be verified/falsified by the CMB data and also by the future collider and non-collider based experiments. We then briefly discuss the stringy origin of inflation, alternative cosmological scenarios, and bouncing universes.  相似文献   

9.
We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctuations to study the spectra for both the inflaton and gauge-invariant (scalar) metric fluctuations in the framework of a single-field inflationary model, in which the quasi-exponential expansion is driven by an inflaton which is minimally coupled to gravity. The proposal here examined is valid also for fluctuations with large amplitudes, but for cosmological scales, where vector and tensor perturbations can be neglected and the fluid is irrotacional.  相似文献   

10.
We describe a new mechanism for reheating the Universe through evaporation of a surface charge of a fragmented inflaton condensate. We show that for a range of Yukawa coupling of the inflaton to the matter sector evaporation gives rise to a much smaller reheat temperature compared to the standard perturbative decay. As a consequence, reheating through a surface effect could solve the gravitino and moduli overproduction problem in inflationary models without fine tuning the Yukawa sector.  相似文献   

11.
If inflaton couples very weakly to ordinary matter, the reheating temperature of the Universe can be lower than the electroweak scale. In this Letter we show that the late reheating occurs in a highly nonuniform way, within narrow areas along the jets produced by ordinary particles originated from inflaton decays. Depending on inflaton mass and decay constant, the initial temperature inside the lumps of the overheated plasma may be large enough to trigger the unsuppressed sphaleron processes with baryon number nonconservation. This allows for efficient local electroweak baryogenesis at reheating temperatures TR approximately O(10) GeV.  相似文献   

12.
13.
A model of the Universe as a mixture of a scalar (inflaton or rolling tachyon from the string theory) and a matter field (classical particles) is analyzed. The particles are created at the expense of the gravitational energy through an irreversible process whereas the scalar field is supposed to interact only with itself and to be minimally coupled with the gravitational field. The irreversible processes of particle creation are related to the non-equilibrium pressure within the framework of the extended (causal or second-order) thermodynamic theory. The scalar field (inflaton or tachyon) is described by an exponential potential density added by a parameter which represents its asymptotic value and can be interpreted as the vacuum energy. This model can simulate three phases of the acceleration field of the Universe, namely, (a) an inflationary epoch with a positive acceleration followed by a decrease of the acceleration field towards zero, (b) a past decelerated period where the acceleration field decreases to a maximum negative value followed by an increase towards zero, and (c) a present accelerated epoch. For the energy densities there exist also three distinct epochs which begin with a scalar field dominated period followed by a matter field dominated epoch and coming back to a scalar field dominated phase.  相似文献   

14.
We elaborate on the predictions of the imaginary Starobinsky model of inflation coupled to matter, where the inflaton is identified with the imaginary part of the inflaton multiplet suggested by the Supergravity embedding of a pure gravity. In particular, we study the impact of higher‐order curvature terms and show that, depending on the parameter range, one may find either a quadratic model of chaotic inflation or monomial models of chaotic inflation with fractional powers between 1 and 2.  相似文献   

15.
《Physics letters. [Part B]》2006,632(5-6):597-604
Phantom cosmology allows to account for dynamics and matter content of the universe tracing back the evolution to the inflationary epoch, considering the transition to the non-phantom standard cosmology (radiation/matter dominated eras) and recovering the today observed dark energy epoch. We develop the unified phantom cosmology where the same scalar plays the role of early time (phantom) inflaton and late-time dark energy. The recent transition from decelerating to accelerating phase is described too by the same scalar field. The (dark) matter may be embedded in this scheme, giving the natural solution of the coincidence problem. It is explained how the proposed unified phantom cosmology can be fitted against the observations which opens the way to define all the important parameters of the model.  相似文献   

16.
In this paper we propose a new inflation model named( p, q) inflation model in which the inflaton potential contains both positive and negative powers of inflaton field in the polynomial form. We derive the accurate predictions of the canonical single-field slow-roll inflation model. Using these formula, we show that our inflation model can easily generate a large amplitude of tensor perturbation and a negative running of spectral index with large absolute value.  相似文献   

17.
In the framework of MSSM inflation, matter and gravitino production are here investigated through the decay of the fields which are coupled to the udd inflaton, a gauge-invariant combination of squarks. After the end of inflation, the flat direction oscillates about the minimum of its potential, losing at each oscillation about 56% of its energy into bursts of gauge/gaugino and scalar quanta when crossing the origin. These particles then acquire a large inflaton VEV-induced mass and decay perturbatively into the MSSM quanta and gravitinos, transferring the inflaton energy very efficiently via instant preheating. Regarding thermalization, we show that the MSSM degrees of freedom thermalize very quickly, yet not immediately by virtue of the large vacuum expectation value of the inflaton, which breaks the \(SU(3)_C\times U(1)_Y\) symmetry into a residual U(1). The energy transfer to the MSSM quanta is very efficient, since full thermalization is achieved after only \(\mathcal {O}(40)\) complete oscillations. The udd inflaton thus provides an extremely efficient reheating of the Universe, with a temperature \(T_{\text {reh}}=\mathcal {O}(10^8\,{\text {GeV}})\), which allows for instance several mechanisms of baryogenesis. We also compute the gravitino number density from the perturbative decay of the flat direction and of the SUSY multiplet. We find that the gravitinos are produced in negligible amount and satisfy cosmological bounds such as the Big Bang nucleosynthesis (BBN) and dark matter (DM) constraints.  相似文献   

18.
The recent detection by the BICEP2 collaboration of a high level of tensor modes seems to exclude the Starobinsky model of inflation. In this paper we show that this conclusion can be avoided: one can embed the Starobinsky model in supergravity and identify the inflaton field with the imaginary (instead of the real) part of the chiral scalaron multiplet in its formulation. Once coupled to matter, the Starobinsky model may then become the chaotic quadratic model with shift symmetry during inflation and is in good agreement with the current data.  相似文献   

19.
In this paper we study inflationary dynamics with a scalar field in an inverse coshyperbolic potential in the braneworld model. We note that a sufficient inflation may be obtained with the potential considering slow-roll approximation in the high energy limit. We determine the minimum values of the initial inflaton field required to obtain sufficient inflation and also determine the relevant inflationary parameters. The numerical values of spectral index of the scalar perturbation spectrum are determined by varying the number of e-foldings for different initial values of the inflaton field. The result obtained here is in good agreement with the current observational limits.   相似文献   

20.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号