首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent combined analyses of the CMB and galaxy cluster data reveal unexpectedly large and anisotropic peculiar velocity fields at large scales. We study cosmic models with included vorticity, acceleration and total angular momentum of the Universe in order to understand the phenomenon. The Zel’dovich model is used to mimic the low redshift evolution of the angular momentum. Solving coupled evolution equations of the second order for density contrast in corrected Ellis–Bruni covariant and gauge-invariant formalism one can properly normalize and evaluate integrated Sachs–Wolfe effect and peculiar velocity field. The theoretical results compared to the observations favor a much larger matter content of the Universe than that of the concordance model. Large-scale flows appear anisotropic with dominant components placed in the plane perpendicular to the axis of vorticity (rotation). The integrated Sachs–Wolfe term has a negative contribution to the CMB fluctuations for the negative cosmological constant and it can explain the observed small power of the CMB TT spectrum at large scales. The rate of the expansion of the Universe may be substantially affected by the angular momentum if its magnitude is large enough.  相似文献   

2.
According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function(instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit 200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H M* Mp and on the slow-roll parameter.  相似文献   

3.
Archeops results     
Archeops is a balloon-borne instrument, dedicated to measuring cosmic microwave background (CMB) temperature anisotropies at high angular resolution (∼12 arcmin.) over a large fraction (30%) of the sky in the (sub)millimetre domain (from 143 to 545 GHz). We describe the results obtained during the last flight: the Archeops estimate of the CMB angular power spectrum, linking for the first time Cobe scales and the first acoustic peak, consequences in terms of cosmological parameters favouring a flat-Λ Universe. We also present the first measurement of galactic dust polarization and accurate maps of the galactic plane diffuse (sub) millimetre emisson. To cite this article: J.-C. Hamilton et al., C. R. Physique 4 (2003).  相似文献   

4.
This paper presents the application of the Szekeres Swiss Cheese model to the analysis of observations of the cosmic microwave background (CMB) radiation. The impact of inhomogeneous matter distribution on the CMB observations is in most cases studied within the linear perturbations of the Friedmann model. However, since the density contrast and the Weyl curvature within the cosmic structures are large, this issue is worth studying using another approach. The Szekeres model is an inhomogeneous, non-symmetrical and exact solution of the Einstein equations. In this model, light propagation and matter evolution can be exactly calculated, without such approximations as small amplitude of the density contrast. This allows to examine in more realistic manner the contribution of the light propagation effect to the measured CMB temperature fluctuations. The results of such analysis show that small-scale, non-linear inhomogeneities induce, via Rees-Sciama effect, temperature fluctuations of amplitude 10−7–10−5 on angular scale ϑ < 0.24° ( > 750). This is still much smaller than the measured temperature fluctuations on this angular scale. However, local and uncompensated inhomogeneities can induce temperature fluctuations of amplitude as large as 10−3, and thus can be responsible the low multipoles anomalies observed in the angular CMB power spectrum.  相似文献   

5.
The first comprehensive analyses of Planck data reveal that the cosmological model with dark energy and cold dark matter can satisfactorily explain the essential physical features of the expanding Universe. However, the inability to simultaneously fit the large and small scale TT power spectrum, the scalar power index smaller than unity, and the observations of the violation of the isotropy found by few statistical indicators of the CMB urge theorists to search for explanations. We show that the model of the Einstein-Cartan cosmology with clustered dark matter halos and their corresponding clustered angular momenta coupled to torsion can account for small-scale-large-scale discrepancy and larger peculiar velocities (bulk flows) for galaxy clusters. The nonvanishing total angular momentum (torsion) of the Universe enters as a negative effective density term in the Einstein-Cartan equations causing partial cancellation of the mass density. The integrated Sachs-Wolfe contribution of the Einstein-Cartan model is negative, and it can therefore provide partial cancellation of the large-scale power of the TT CMB spectrum. The observed violation of the isotropy appears as a natural ingredient of the Einstein-Cartan model caused by the spin densities of light Majorana neutrinos in the early stage of the evolution of the Universe and bound to the lepton CP violation and matter-antimatter asymmetry.  相似文献   

6.
We consider a recently proposed scenario for the generation of primordial cosmological perturbations, the so called Cosmological Slingshot scenario. We first obtain a general expression for the Slingshot primordial power spectrum which extends previous results by including a blue pre-bounce residual contribution at large scales. Starting from this expression we numerically compute the CMB temperature and polarization power spectra arising from the Slingshot scenario and show that they excellently match the standard WMAP 3-year best-fit results. In particular, if the residual blue spectrum is far above the largest WMAP observed scale, the Slingshot primordial spectrum fits the data well by only fixing its amplitude and spectral index at the pivot scale k p = 10−3 h Mpc−1. We finally show that all possible distinctive Slingshot signatures in the CMB power spectra are confined to very low multipoles and thus very hard to detect due to large cosmic variance dominated error bars at these scales.  相似文献   

7.
A review of the spatially flat cosmological model SU(2)CMB, minimally induced by the postulate that the cosmic microwave background (CMB) is subject to an SU(2) rather than a U(1) gauge principle, is given. Cosmological parameter values, which are determined from the Planck CMB power spectra at small angular scales, are compared to their values in spatially flat ΛCDM from both local and global extractions. As a global model SU(2)CMB leans toward local ΛCDM cosmology and is in tension with some global ΛCDM parameter values. Spectral antiscreening / screening effects in SU(2)CMB radiance are presented within the Rayleigh– Jeans regime in dependence on temperature and frequency. Such radiance anomalies can cause CMB large-angle anomalies. Therefore, it is pointed out how SU(2)CMB modifies the Boltzmann equation  for the perturbations of the photon phase space distribution at low redshift and why this requires to the solve the ℓ-hierarchy on a comoving momentum grid (q-grid) for all z.  相似文献   

8.
Summary We describe a balloon-borne telescope, optimized for observations of the Cosmic Microwave Background (CMB) anisotropies in the mm wavelength region, at angular scales around 10. We stress the scientific motivations for these measurements and the problematics driving the experiment design. Using large throughput bolometers cooled at 0.3K we have a sensitivity high enough to detect CMB anisotropies at level ΔT/T∼10−5 in few seconds of integration time. Paper presented at the 6th Cosmic Physics National Conference, Palermo, 3–7 November 1992.  相似文献   

9.
The apparent low power in the cosmic microwave background (CMB) temperature anisotropy power spectrum derived from the Wilkinson Microwave Anisotropy Probe motivated us to consider the possibility of a nontrivial topology. We focus on simple spherical multiconnected manifolds and discuss their implications for the CMB in terms of the power spectrum, maps, and the correlation matrix. We perform a Bayesian model comparison against the fiducial best-fit cold dark matter model with a cosmological constant based both on the power spectrum and the correlation matrix to assess their statistical significance. We find that the first-year power spectrum shows a slight preference for the truncated cube space, but the three-year data show no evidence for any of these spaces.  相似文献   

10.
One of the main challenges facing upcoming Cosmic Microwave Background (CMB) experiments aiming at measuring temperature anisotropies with great accuracy will be to assess the contamination of CMB measurements by galactic and extragalactic foregrounds. On the extragalactic side, confusion noise from extragalactic sources hampers the detection of intrinsic CMB anisotropies at small angular scales. Secondary CMB anisotropies must also be carefully accounted for in order to isolate the primordial fluctuations. We present in this article a brief overview of the extragalactic contributions to the CMB. The galactic foregrounds are discussed elsewhere (Giard and Lagache, this issue). To cite this article: G. Lagache, N. Aghanim, C. R. Physique 4 (2003).  相似文献   

11.
In this review, I outline the use of galaxy correlations to constrain cosmological parameters. As with the cosmic microwave background (CMB), the density of dark and baryonic matter imprints important scales on the fluctuations of matter and thus the clustering of galaxies, e.g., the particle horizon at matter-radiation equality and the sound horizon at recombination. Precision measurements of these scales from the baryon acoustic oscillations (BAO) and the large scale shape of the power spectrum of galaxy clustering provide constraints on Ω m h 2. Recent measurements from the Sloan Digital Sky Survey (SDSS) and 2dF Galaxy Redshift Survey (2dFGRS) strongly suggest that Ω m < 0.3. This forms the basic evidence for a flat Universe dominated by a Cosmological Constant (Λ) today (when combined with results from the CMB and supernova surveys). Further evidence for this cosmological model is provided by the late-time Integrated Sachs–Wolfe (ISW) effect, which has now been detected using a variety of tracers of the large scale structure in the Universe out to redshifts of z > 1. The ISW effect also provides an opportunity to discriminate between Λ, dynamical dark energy models and the modification of gravity on large scales.  相似文献   

12.
We consider the effects of possible tachyonic perturbations of dark energy on the CMB anisotropy. Such perturbations emerge, in particular, in models with phantom dark energy violating Lorentz invariance. Therefore, we discuss tachyonic perturbations with a Lorentz-violating dispersion relation. We show that the corresponding contribution to the CMB anisotropy can have an appreciable amplitude, while the angular spectrum has a distinct maximum. These predictions are compared with observational data. The tachyonic contribution slightly improves the agreement between the theory and observations, but this improvement is statistically insignificant and our analysis gives constraints on the tachyonic perturbation amplitude.  相似文献   

13.
We review the imprints that a primordial magnetic field may have left upon the cosmic microwave background (CMB) anisotropy and polarization through Faraday rotation around the time of decoupling. Differential Faraday rotation reduces the degree of linear polarization acquired through anisotropic Thomson scattering. Depolarization reduces the damping due to photon diffusion, which results in an increase of the anisotropy on small angular scales. The effect is significant at frequencies around and below 10 GHz {ie2513-1} whereB 0 is the present strength of the primordial magnetic field.  相似文献   

14.
Baryon-density perturbations of large amplitude may exist if they are compensated by dark-matter perturbations such that the total density is unchanged. Primordial abundances and galaxy clusters allow these compensated isocurvature perturbations (CIPs) to have amplitudes as large as ~10%. CIPs will modulate the power spectrum of cosmic microwave background (CMB) fluctuations--those due to the usual adiabatic perturbations--as a function of position on the sky. This leads to correlations between different spherical-harmonic coefficients of the temperature and/or polarization maps, and induces polarization B modes. Here, the magnitude of these effects is calculated and techniques to measure them are introduced. While a CIP of this amplitude can be probed on large scales with existing data, forthcoming CMB experiments should improve the sensitivity to CIPs by at least an order of magnitude.  相似文献   

15.
The impact of angular temperature variations on the thermodynamic variables and real-space correlation functions of black-body radiation are analyzed. In particular, the effect of temperature fluctuations on the number density and energy density correlations of the cosmic microwave background (CMB) is studied. The angular temperature fluctuations are modeled by an isotropic and homogeneous Gaussian random field, whose autocorrelation function is defined on the unit sphere in momentum space. This temperature correlation function admits an angular Fourier transform which determines the density correlations in real space induced by temperature fluctuations. In the case of the CMB radiation, the multipole coefficients of the angular power spectrum defining the temperature correlation function have been measured by the Planck satellite. The fluctuation-induced perturbation of the equilibrium variables (internal energy, entropy, heat capacity and compressibility) can be quantified in terms of the measured multipole coefficients by expanding the partition function around the equilibrium state in powers of the temperature random field. The real-space density correlations can also be extracted from the measured temperature power spectrum. Both the number density and energy density correlations of the electromagnetic field are long-range, admitting power-law decay; in the case of the energy density correlation, the fluctuation-induced correlation overpowers the isotropic equilibrium correlation in the long-distance limit.  相似文献   

16.
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.  相似文献   

17.
Recent released WMAP data show a low value of quadrupole in the CMB temperature fluctuations, which confirms the early observations by COBE. In this Letter we consider a model of two inflatons with different masses, , m1>m2 and study its effects on CMB of suppressing the primordial power spectrum P(k) at small k. Inflation is driven in this model firstly by the heavier inflaton φ1, then the lighter field φ2. But there is no interruption in between. We numerically calculate the scalar and tensor power spectra with mode by mode integrations, then fit the model to WMAP temperature correlations TT and the TE temperature-polarization spectra. Our results show that with m11014 GeV and m21013 GeV, this model solves the problems of flatness, etc. and the CMB quadrupole predicted can be much lower than the standard power-law ΛCDM model.  相似文献   

18.
We present a calculation of the angular size of the circles in the CMB predicted by Penrose on the basis of his conformal cyclic cosmology. If these circles are detected, the existence of an upper limit on their angular radius would provide a challenge for inflation.  相似文献   

19.
We examine the effect of the thermal vacuum on the power spectrum of inflation by using the thermal field dynamics. We find that the thermal effect influences the CMB anisotropy at large length scale. After removing the divergence by using the holographic cutoff, we observe that the thermal vacuum explains well the observational CMB result at low multipoles. This shows that the temperature dependent factor should be considered in the study of power spectrum in inflation, especially at large length scale.  相似文献   

20.
We calculate the temperature anisotropies of the cosmic microwave background (CMB) for several initial power spectra of density perturbations with a built-in scale suggested by recent optical data on the spatial distribution of rich clusters of galaxies. Using cosmological models with different values of the spectral index, baryon fraction, Hubble constant, and cosmological constant, we compare the calculated radiation power spectrum with the CMB temperature anisotropies measured by the Saskatoon experiment. We show that spectra with a spike at 120h −1 Mpc are in agreement with the Saskatoon data. The combined evidence from cluster and CMB data favors the presence of a peak and a subsequent break in the initial matter power spectrum. Such a feature is similar to the prediction of an inflationary model wherein an inflaton field is evolving through a kink in the potential. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 6, 373–378 (25 September 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号