首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research investigates the dispersion of colloids through fracture systems by exploring experimentally and numerically the transport and dispersion of 1.0-, 0.11-, and 0.043-mum diameter fluorescent carboxylate-modified microspheres and chloride at various flow rates through variable-length, synthetic Plexiglas fractures (flow cells). A dimensionless number describing each experiment is varied by changing the colloid size, flow rate, and fracture length. Surface characteristics of the microspheres and Plexiglas favor repulsive interactions, thereby minimizing the chance of colloid filtration and remobilization. Full recovery of the colloids is typically observed, thereby supporting the assumption of negligible colloid filtration. In comparison to chloride transport, there is increased tailing for colloid plumes traveling through the flow cell. This increased tailing is attributed to Taylor dispersion phenomena (dispersion due to an advection gradient). In the synthetic fractures investigated here, colloid dispersion due to the velocity gradient is evident, but fully developed Taylor conditions are not realized. A particle-tracking algorithm is run inversely to estimate the effective dispersion rate for the colloid plume in each experiment as a function of the experimental parameters (flow rate, fracture length, and colloid size). Results suggest that the log of the effective dispersion rate of the colloid plume increases linearly with the log of the dimensionless number comprising experimental parameters.  相似文献   

2.
A triple continuum one-dimensional transport model is developed to analyse colloid facilitated contaminant transport in fractured geological formations. The model accounts for contaminant transport in the fracture, reversible deposition onto fracture surfaces and onto the colloids, diffusion into the rock formation and irreversible deposition of colloids onto the fracture surfaces. Sorption of the contaminant onto the fracture surfaces and onto suspended and deposited colloids are assumed to follow the linear equilibrium assumption (LEA); whereas the irreversible deposition of colloids onto the fracture skin surface is assumed to be governed by the linear kinetic sorption isotherms. The resulting coupled contaminant transport equations are solved using a numerical model employing fully implicit finite difference method based formulation. Results clearly demonstrate that the presence of the fracture skin significantly influences colloid facilitated contaminant migration in fractured formations. Fracture skin porosity and fracture skin diffusion coefficient are demonstrated to be the critical fracture skin properties that affect colloid facilitated contaminant migration in fractures. The impact of different colloid parameters on contaminant transport is investigated. The distribution coefficient for contaminant sorption onto the suspended colloids is found to be the most significant colloid related parameter influencing contaminant migration in fractured formation with fracture skin.  相似文献   

3.
Summary: We consider an assembly of colloidal particles, which are immersed in a binary mixture of polymers. At temperatures close to the critical point of the free mixture, the fluctuations of the composition induce a critical Casimir force between colloids. This force naturally depends on their distance and it is responsible for the colloidal aggregation. In this paper, we propose to study the kinetics of such a transition leading colloids from a dispersed phase (gas) to a dense one (liquid). This kinetics is studied through the relaxation rate, which is a function of the transfer wave-vector.  相似文献   

4.
Microstructural morphology of the extracellular matrix guides the organization of cells in 3D. However, current biomaterials-based matrices cannot provide distinct spatial cues through their microstructural morphology due to design constraints. To address this, colloidal gels are developed as 3D matrices with distinct microstructure by aggregating ionic polyurethane colloids via electrostatic screening. Due to the defined orientation of interconnected particles, positively charged colloids form extended strands resulting in a dense microstructure whereas negatively charged colloids form compact aggregates with localized large voids. Chondrogenesis of human mesenchymal stem cells (MSCs) and endothelial morphogenesis of human endothelial cells (ECs) are examined in these colloidal gels. MSCs show enhanced chondrogenic response in dense colloidal gel due to their spatial organization achieved by balancing the cell–cell and cell–matrix interactions compared to porous gels where cells are mainly clustered. ECs tend to form relatively elongated cellular networks in dense colloidal gel compared to porous gels. Additionally, the role of matrix stiffness and viscoelasticity in the morphogenesis of MSCs and ECs are analyzed with respect to microstructural morphology. Overall, these results demonstrate that colloidal gels can provide spatial cues through their microstructural morphology and in correlation with matrix mechanics for cell morphogenesis.  相似文献   

5.
To evaluate the risk of contaminant transport by mobile colloids, it seems essential to understand how colloids and associated pollutants behave during their migration through uncontaminated soil or groundwater. In this study, we investigated at pH 4 the influence of flow velocity, humic acid, solution Ca(2+) concentrations, and trace metals (Pb(2+), Cu(2+)) on the transport and deposition of kaolinite particles through a pure crystalline quartz sand as porous medium. A short-pulse chromatographic technique was used to measure colloid deposition. Adsorption of humic acid to the kaolinite increase its negative surface charge and then decrease colloid deposition. Experiments with different flow rates showed that humic-coated kaolinite colloid deposition followed a first-order kinetic rate law. The deposition rate coefficients of humic-coated kaolinite colloids increase with increasing Ca(2+) concentration in the suspension. The effect of trace metals on the mobility is studied by injecting two suspensions with different concentrations of Pb(2+) and Cu(2+). At very low cation concentration, the fraction of colloids retained is low and roughly independent of the nature of divalent cations. At high concentration, the deposition is higher and depends on the affinity of divalent cations toward humic-coated kaolinite colloids.  相似文献   

6.
Brezinski DP 《Talanta》1983,30(5):347-354
The pH measured in a charged sediment is often very different from that of the supernatant solution. This effect has been studied to determine whether it is caused by an anomalous junction potential at the reference electrode, as commonly thought, or by Donnan partitioning of hydrogen ions. Electrical conductivities in sediments of a strong cation-exchange resin were much higher than predicted by the junction artifact theory; electrode measurements of pH in sediments corresponded to titratable H(+)-content, and pH-changes induced by titration and salt addition were in accord with partitioning theory. These findings suggest that most pH differences observed between colloidal sediments and supernatants are real, not junction artifacts. Guidelines for interpretation of pH measurements on colloids are suggested.  相似文献   

7.
Aside from the virial expansion and density functional methods, theoretical results on the concentration partitioning behavior for charged colloids within cylindrical pores have not been presented so far. With the increase of relative solute size as well as solute concentration, however, the approximate analytic methods have proven to be unreliable. A suitable Monte Carlo simulation, which is proved as a rigorous technique for concentrated colloids, has been applied in the present study. The concentration profiles within the pore representing the effects of solute concentration as well as solution ionic strength are obtained via a stochastic process, from which the partition coefficient is estimated. Previously developed analyses on the linearized Poisson‐Boltzmann (P‐B) equation are employed for the estimation of long‐range electrostatic interaction. Both the singularity method and the analytical solution with series representation properly determine respective interaction energies between pairs of solute particles and between the solute particle and the pore wall. The effect of solute‐solute and solute‐wall interactions associated with repulsive energy is presented on the partitioning of colloids. Simulation results show that the partition coefficient is evidently enhanced when no particle‐wall interaction exists. Hindered diffusion can be predicted by the simplifying assumption of the centerline approximation analogy, where a dependence on the solute concentration becomes greater as the solution ionic strength decreases.  相似文献   

8.
A generalized model has been proposed to describe the stability of polymer colloids stabilized with ionic surfactants by accounting simultaneously for the interactions among three important physicochemical processes: colloidal interactions, surfactant adsorption equilibrium, and association equilibria of surface charge groups with counterions at the particle-liquid interface. A few Fuchs stability ratio values, determined experimentally for various salt types and concentrations through measurements of the doublet formation kinetics, are used to estimate the model parameters, such as the surfactant adsorption and counterion association parameters. With the estimated model parameters, the generalized model allows one to monitor the dynamics of surfactant partitioning between the particle surface and the disperse medium, to analyze the variation of surface charge density and potential as a function of the electrolyte type and concentration, and to predict the critical coagulant concentration for fast coagulation. Three fluorinated polymer colloids, stabilized by perfluoropolyether-based carboxylate surfactant, have been used to demonstrate the feasibility of the proposed colloidal stability model.  相似文献   

9.
We report an experimental study in which we compare the self-assembly of 1 mum colloids bridged through hybridization of complementary single-stranded DNA (ssDNA) strands (12 bp) attached to variable-length double-stranded DNA spacers that are grafted to the colloids. We considered three different spacer lengths: long spacers (48 500 bp), intermediate length spacers (7500 bp), and no spacers (in which case the ssDNA strands were directly grafted to the colloids). In all three cases, the same ssDNA pairs were used. However, confocal microscopy revealed that the aggregation behavior is very different. Upon cooling, the colloids coated with short and intermediate length DNAs undergo a phase transition to a dense amorphous phase that undergoes structural arrest shortly after percolation. In contrast, the colloids coated with the longest DNA systematically form finite-sized clusters. We speculate that the difference is due to the fact that very long DNA can easily be stretched by the amount needed to make only intracluster bonds, and in contrast, colloids coated with shorter DNA always contain free binding sites on the outside of a cluster. The grafting density of the DNA decreases strongly with increasing spacer length. This is reflected in a difference in the temperature dependence of the aggregates: for the two systems coated with long DNA, the resulting aggregates were stable against heating, whereas the colloids coated with ssDNA alone would dissociate upon heating.  相似文献   

10.
Doucet FJ  Maguire L  Lead JR 《Talanta》2005,67(1):144-154
This research has evaluated the ability of cross-flow filtration (CFF) to perform correct size fractionation of natural aquatic colloids (materials from 1 nm to 1 μm in size) and particles (>1 μm) using scanning electron microscopy (SEM) combined with atomic force microscopy (AFM). SEM provided very clear images at high lateral resolution (ca. 2-5 nm), whereas AFM offered extremely low resolution limits (sub-nanometer) and was consequently most useful for studying very small material. Both SEM and AFM were consistent in demonstrating the presence of colloids smaller than 50 nm in all fractions including the retentates (i.e. the fractions retained by the CFF membrane), showing that CFF fractionation is not fully quantitative and not based on size alone. This finding suggests that previous studies that investigated trace element partitioning between dissolved, colloidal and particulate fractions using CFF may need to be re-visited as the importance of particles and large colloids may have been over-estimated. The observation that ultra-fine colloidal material strongly interacted with and completely coated a mica substrate to form a thin film has important potential implications for our understanding of the behaviour of trace elements in aquatic systems. The results suggest that clean, ‘pure’ surfaces are unlikely to exist in the natural environment. As surface binding of trace elements is of great importance, the nature of this sorbed layer may dominate trace element partitioning, rather than the nature of the bulk particle.  相似文献   

11.
We consider here a low-density assembly of colloidal particles immersed in a critical polymer mixture of two chemically incompatible polymers. We assume that, close to the critical point of the free mixture, the colloids prefer to be surrounded by one polymer (critical adsorption). As result, one is assisted to a reversible colloidal aggregation in the nonpreferred phase, due the existence of a long-range attractive Casimir force between particles. This aggregation is a phase transition driving the colloidal system from dilute to dense phases, as the usual gas-liquid transition. We are interested in a quantitative investigation of the phase diagram of the immersed colloids. We suppose that the positions of particles are disordered, and the disorder is quenched and follows a Gaussian distribution. To apprehend the problem, use is made of the standard phi(4) theory, where the field phi represents the composition fluctuation (order parameter), combined with the standard cumulant method. First, we derive the expression of the effective free energy of colloids and show that this is of Flory-Huggins type. Second, we find that the interaction parameter u between colloids is simply a linear combination of the isotherm compressibility and specific heat of the free mixture. Third, with the help of the derived effective free energy, we determine the complete shape of the phase diagram (binodal and spinodal) in the (Psi,u) plane, with Psi as the volume fraction of immersed colloids. The continuous "gas-liquid" transition occurs at some critical point K of coordinates (Psi(c) = 0.5,u(c) = 2). Finally, we emphasize that the present work is a natural extension of that, relative to simple liquid mixtures incorporating colloids.  相似文献   

12.
The method of brownian dynamics of used to study the non-equilibrium properties of very dilute colloids electrostatically stabilised in dilute aqueous electrolyte. It is assumed that the colloid is a monodisperse system of structureless spherical particles embedded in a hydrodynamic continuum. Although the particles are interacting electrostatically through a screened Coulomb potential, the dilution is such that effects arising from coupling of hydrodynamic flow can be ignore. Studies of the self-diffusion coefficient and van Howe functions show that after an initial period, during which the particles move essentially independently, the flow properties of the colloids are significantly different from those expected on the basis of free brownian motion.  相似文献   

13.
Transport of monodispersed buoyant 1-mum latex microspheres, dense 1.34-microm montmorillonite particles, Li(+) and Br(-) was investigated in a naturally fractured chalk core with an average equivalent hydraulic aperture of 183 microm. Studied parameters were: tracer arrival time, C/C(0) values, mass recovery, size distribution and the impact of initial concentration. Breakthrough time of both colloidal tracers was faster than that of the soluble tracers. Significantly lower recovery and slightly slower breakthrough time were observed for the clay particles relative to the microspheres, apparently mainly due to the former's higher density, resulting in preferential gravitational settling of the clay particles. However, variable surface charge and nonuniform shape and size of the clay particles may also play a role in the observed differences. From the theoretical scale ratio, the time interval calculation seems to be a major factor in colloid recovery. Clay-particle size fractionation was observed (0.62 vs 1.34 microm at the outflow and inflow, respectively), and there was no significant influence of the initial concentration (100 and 500 mg/L) on transport properties. Our observations indicate that colloid density is a dominant property for their transport in fractures. This work emphasizes the need for caution when the results of studies in which buoyant colloids are used as tracers are extrapolated to natural systems in which clay colloids are present.  相似文献   

14.
A combined experimental and multiscale simulation study of the influence of polymer brush modification on interactions of colloidal particles and rheological properties of dense colloidal suspensions has been conducted. Our colloidal suspension is comprised of polydisperse MgO colloidal particles modified with poly(ethylene oxide) (PEO) brushes in water. The shear stress as a function of shear rate was determined experimentally and from multiscale simulations for a suspension of 0.48 volume fraction colloids at room temperature for both bare and PEO-modified MgO colloids. Bare MgO particles exhibited strong shear thinning behavior and a yield stress on the order of several Pascals in both experiments and simulations. In contrast, simulations of PEO-modified colloids revealed no significant yielding or shear thinning and viscosity only a few times larger than solvent viscosity. This behavior is inconsistent with results obtained from experiments where modification of colloids with PEO brushes formed by adsorption of PEO-based comb-branched chains resulted in relatively little change in suspension rheology compared to bare colloids over the range of concentration of comb-branch additives investigated. We attribute this discrepancy in rheological properties between simulation and experiment for PEO-modified colloidal suspensions to heterogeneous adsorption of the comb-branch polymers.  相似文献   

15.
In the last two decades, advances in synthetic, experimental and modeling/simulation methodologies have considerably enhanced our understanding of colloidal suspension rheology and put the field at the forefront of soft matter research. Recent accomplishments include the ability to tailor the flow of colloidal materials via controlled changes of particle microstructure and interactions. Whereas hard sphere suspensions have been the most widely studied colloidal system, there is no richer type of particles than soft colloids in this respect. Yet, despite the remarkable progress in the field, many outstanding challenges remain in our quest to link particle microstructure to macroscopic properties and eventually design appropriate soft composites. Addressing them will provide the route towards novel responsive systems with hierarchical structures and multiple functionalities. Here we discuss the key structural and rheological parameters which determine the tunable rheology of dense soft deformable colloids. We restrict our discussion to non-crystallizing suspensions of spherical particles without electrostatic or enthalpic interactions.  相似文献   

16.
Nuclear magnetic resonance (NMR) techniques were used to quantify the transport of colloids through porous media. This was achieved via the application of chemically-resolved pulsed field gradient (PFG) methods, hence probing the displacement (probability distribution) propagators of both the colloidal and continuous liquid phase. A dilute decane-in-water emulsion was used with flow through a random glass sphere packing being considered. The acquired propagators allowed for quantification of both colloidal entrapment and the velocities of both the continuous phase and the flowing colloids. The flowing colloids were found to experience a velocity acceleration factor (VAF) increase of 1.08 relative to the continuous phase. This was found to be independent of displacement observation time or flowrate. It was speculated to be a consequence of radial exclusion due to the finite size of the colloids. Simulations of the colloidal transport were also performed using a lattice Boltzmann platform and a Lagrangian particle-tracking algorithm which incorporated colloidal radial exclusion. Reasonable agreement was observed between the simulation and the experimental data.  相似文献   

17.
Heavy-metal-containing humic colloids from seepage water samples of three different municipal waste disposal plants were characterized in terms of molecular weight, hydrodynamic radius and heavy metal content. The size distribution of the colloids was determined with ultrafiltration (UF) and flow field-flow fractionation (flow FFF). The humic colloids in the seepage water samples were characterized using an off-line coupling of flow FFF with an enzyme-linked immunosorbent assay (ELISA) for humic substances. The heavy metals in the different size fractions obtained by UF and flow FFF were determined using atomic absorption spectroscopy (AAS). The colloid size distributions obtained with UF showed a maximum of the distribution in the range 1–10 nm. Seepage water samples with high colloid concentrations had a second maximum in the range 0.1–1 m. The determination of colloid size with flow FFF gave different colloid size distributions for the three waste disposal seepage waters, whereas water from the oldest disposal plant showed the smallest colloid size with a maximum at 0.9 nm and water from the most recent plant showed the largest colloid size with a maximum at 1.3 nm. The determination of particle classes with regard to the chemical composition using a scanning electron microscope with energy dispersive X-ray fluorescence detector (SEM/EDX) showed that the particles can be divided into five classes: silicates, insoluble salts, iron(hydr)oxides, carbonates and organic colloids (humic colloids). Flow FFF/ELISA off-line coupling showed that the most frequently occurring colloids of the seepage waters were humic colloids and investigation of the UF-size-fractions with AAS showed that up to 77% of the total mass of a heavy metal element can be bound to particles, especially to humic colloids. Additionally, the distributions of the heavy metals Fe, Cu and Zn were investigated with flow FFF/AAS off-line coupling. These results also showed that a substantial amount of these heavy metals (up to 46%) was bound to humic colloids.  相似文献   

18.
19.
Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere.  相似文献   

20.
In our previous paper, a method for preparing enormous surface-enhanced Raman scattering (SERS) active substrates through the aggregation of silver particles trapped at an air-water interface was reported. Here, further efforts were devoted to investigate the origin of assembling silver particle films by adsorbing nanoparticles from bulk colloids to the air-water interface. It was revealed that it is thermodynamically favorable for a colloidal particle in bulk colloids to adsorb to the air-water interface; however, a finite sorption barrier between it and the nearby particles usually restrains the adsorption process. When an electrolyte such as KCl, which is commonly used as an activating agent for additional SERS enhancement, was added into silver colloids, it largely reduced the sorption barrier. Thus, silver nanoparticles can break through the sorption barrier, pop up, and be trapped at the air-water interface. The trapped silver particles are more inclined to aggregate at the interface than those in bulk colloids due to the increase of van der Waals forces and the reduction of electrostatic forces. The morphology of the as-prepared silver particle films was characterized by scanning electron microscope, and their SERS activity was tested using NaSCN as a probe molecule. The surface enhancement of the silver particle films is about 1-2 orders of magnitude higher compared with that of silver colloids, because most of the silver particles in the films are in the aggregation form that provides enormous SERS enhancement. Furthermore, the stability of such type of films is much better that of colloid solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号