首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It is proved that the boundary-value problem
, has a solution, provided that the following conditions are fulfilled:
, and, for ϕ(u) ≡ 0, the Galerkin method converges in the norm of the space H1(a, b; a). Several theorems of a similar kind are presented. Bibliography: 4 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 334, 2006, pp. 246–266.  相似文献   

2.
Let Ω1, Ω2 ⊂ ℝν be compact sets. In the Hilbert space L 21 × Ω2), we study the spectral properties of selfadjoint partially integral operators T 1, T 2, and T 1 + T 2, with
$ \begin{gathered} (T_1 f)(x,y) = \int_{\Omega _1 } {k_1 (x,s,y)f(s,y)d\mu (s),} \hfill \\ (T_2 f)(x,y) = \int_{\Omega _2 } {k_2 (x,t,y)f(x,t)d\mu (t),} \hfill \\ \end{gathered} $ \begin{gathered} (T_1 f)(x,y) = \int_{\Omega _1 } {k_1 (x,s,y)f(s,y)d\mu (s),} \hfill \\ (T_2 f)(x,y) = \int_{\Omega _2 } {k_2 (x,t,y)f(x,t)d\mu (t),} \hfill \\ \end{gathered}   相似文献   

3.
We study nonnegative solutions of the initial value problem for a weakly coupled system
  相似文献   

4.
In this paper we deal with the four-point singular boundary value problem
$ \left\{ \begin{gathered} (\phi _p (u'(t)))' + q(t)f(t,u(t),u'(t),u'(t)) = 0,t \in (0,1), \hfill \\ u'(0) - \alpha u(\xi ) = 0,u'(1) + \beta u(\eta ) = 0, \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} (\phi _p (u'(t)))' + q(t)f(t,u(t),u'(t),u'(t)) = 0,t \in (0,1), \hfill \\ u'(0) - \alpha u(\xi ) = 0,u'(1) + \beta u(\eta ) = 0, \hfill \\ \end{gathered} \right.   相似文献   

5.
We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions
$\left\{ \begin{gathered} u^{(4)} (t) = f(t,u(t),u'(t),u'(t),u'(t)),a.e.t \in [0,1], \hfill \\ u(0) = a,u'(0) = b,u(1) = c,u'(1) = d, \hfill \\ \end{gathered} \right. $\left\{ \begin{gathered} u^{(4)} (t) = f(t,u(t),u'(t),u'(t),u'(t)),a.e.t \in [0,1], \hfill \\ u(0) = a,u'(0) = b,u(1) = c,u'(1) = d, \hfill \\ \end{gathered} \right.   相似文献   

6.
We consider the weighted Hardy integral operatorT:L 2(a, b) →L 2(a, b), −∞≤a<b≤∞, defined by . In [EEH1] and [EEH2], under certain conditions onu andv, upper and lower estimates and asymptotic results were obtained for the approximation numbersa n(T) ofT. In this paper, we show that under suitable conditions onu andv, where ∥wp=(∫ a b |w(t)|p dt)1/p. Research supported by NSERC, grant A4021. Research supported by grant No. 201/98/P017 of the Grant Agency of the Czech Republic.  相似文献   

7.
The paper is devoted to the study of the behavior of the following mixed problem for large values of time:
where Ω is an unbounded region of ℝ n with, generally speaking, noncompact boundary ; the surface Γ is star-shaped (relative to the origin), ν is the unit outer normal to ∂Ω; and the initial functionsf andg are assumed to be sufficiently smooth and finite. Under certain restrictions on the part of the boundary Γ2 constrained by the impedance condition, we establish that one can match the impedanceg≥0 (characterizing the absorption of energy by the surface Γ2) to the geometric properties of this surface so that the energy on an arbitrary compact set will decay at a rate characteristic for the first mixed problem. Translated fromMatematicheskie Zametki, Vol. 66, No. 3, pp. 393–400, September, 1999.  相似文献   

8.
We prove a sufficient condition for the existence of global C 0-solutions for a class of nonlinear functional differential evolution equation of the form $ \left\{{ll} \displaystyle u'(t)\in Au(t)+f(t),&t\in\mathbb{R}_+, \\[2mm] f(t)\in F(t,u(t),u_t),&t\in\mathbb{R}_+, \\[2mm] u(t)=g(u)(t),& t\in [\,-\tau,0\,], \right. $ \left\{\begin{array}{ll} \displaystyle u'(t)\in Au(t)+f(t),&t\in\mathbb{R}_+, \\[2mm] f(t)\in F(t,u(t),u_t),&t\in\mathbb{R}_+, \\[2mm] u(t)=g(u)(t),& t\in [\,-\tau,0\,], \end{array}\right.  相似文献   

9.
It is shown that an infinite-dimensional dynamical system of the form
studied for sufficiently small r 1, s 1, R k , and S k in the preceding part of this work [Contemporary Mathematics and Its Applications, Vol. 2. Partial Differential Equations (2003), pp. 22–49] describes the evolution of the free boundary in the problem of the Hele-Shaw flow in the case where the pressure is constant on the free boundary (Leibenson condition). __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 24, Dynamical Systems and Optimization, 2005.  相似文献   

10.
Sufficient conditions are derived for the existence of a globally attractive almost periodic solution of a competition system modelled by the nonautonomous Lotka–Volterra delay differential equations $$\begin{gathered} \frac{{{\text{d}}N_1 (t)}}{{{\text{d}}t}} = N_1 (t)\left[ {r_1 (t) - a_{11} (t)N_1 (t - \tau (t)) - a_{12} (t)N_2 (t - \tau (t))} \right], \hfill \\ \frac{{{\text{d}}N_2 (t)}}{{{\text{d}}t}} = N_2 (t)\left[ {r_2 (t) - a_{21} (t)N_1 (t - \tau (t)) - a_{22} (t)N_2 (t - \tau (t))} \right], \hfill \\ \end{gathered} $$ in which $ \tau ,r_i ,a_{ij} (i,j = 1,2) $ are continuous positive almost periodic functions; conditions are also obtained for all positive solutions of the above system to 'oscillate' about the unique almost periodic solution. Some ecobiological consequences of the convergence to almost periodicity and delay induced oscillations are briefly discussed.  相似文献   

11.
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate.It follows that the solution converges to the solution of a nonlinear diffusion problem,as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.  相似文献   

12.
The solvability of the boundary-value problem
in the space H 0 2 (0, 1) is proved under the following assumptions: p0(t)t3(1 − t)3 ∈ L(0, 1), p1(t)t(1 − t) ∈ L(0, 1), f(t)t3/2(1 − t)3/2 ∈ L(0, 1), 0 ≤ p2(t)[t(1 − t)]k+1 ∈ L(0, 1), 0 ≤ f0(t)[t(1 − t)]3/2 ∈ L(0, 1), 0 ≤ f1(t)[t(1 − t)]3m+3 ∈ L(0, 1), ϕ(u)u ≥ −c|u|, c > 0,
. Bibliography: 6 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 334, 2006, pp. 233–245.  相似文献   

13.
Sufficient conditions of solvability and unique solvability of the boundary value problem are established, where are measurable functions and the vector function is measurable in the first and continuous in the last kmn arguments; moreover, this function may have nonintegrable singularities with respect to the first argument.  相似文献   

14.
Using the Leggett-Williams fixed point theorem,we will obtain at least three symmetric positive solutions to the second-order nonlocal boundary value problem of the form u(t)+g(t)f(t,u(t))=0,0相似文献   

15.
Let Ω⊂R n (n≥2) be a bounded open set;Q T =Ω×[0,T],S T =δΩ×[0,T],S 1,S 2 be the partial boundaries of Ω andS 1S 2=δΩ,S 1S 2=Φ. We denote Γ1.T =S 1×[0,T], Γ2.T =S 2×[0,T], and consider the problem
  相似文献   

16.
§1 IntroductionAnvarovandLarinov[1]introducedthefollowingprey-predatorsystem:x(t)=x(t)[α-γy(t)-γ∫∞0K1(s)y(t-s)ds-∫∞0∫∞0R1(s,θ)y(t-s)y(t-θ)dθds],y(t)=y(t)[-β μx(t) μ∫∞0K2(s)x(t-s)ds ∫∞0∫∞0R2(s,θ)x(t-θ)x(t-s)dθds],(1)whereα,γ,βandμarepositiveconstants,Ki∈C([0,∞),(0,∞))andRi∈C([0,∞)×[0,∞),(0,∞)),i=1,2.Fortheecologicalsenseofsystem(1),wereferto[1,2]andrefer-encescitedtherein.Sincerealisticmodelsrequiretheinclusionoftheeffectofchangingen-vironment,itmot…  相似文献   

17.
In this paper we present the analysis of an algorithm of Uzawa type to compute solutions of the quasi variational inequality $$\begin{gathered} (QVI)\left( {\frac{{\partial ^2 u}}{{\partial t^2 }},\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + \left( {\frac{{\partial u}}{{\partial x}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \left( {\frac{{\partial ^2 u}}{{\partial x\partial t}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \hfill \\ + \left[ {u(1,t) + \frac{{\partial u}}{{\partial t}}(1,t)} \right]\left[ {\upsilon (1) - \frac{{\partial u}}{{\partial t}}(1,t)} \right] + J(u;\upsilon ) - J\left( {u;\frac{{\partial u}}{{\partial t}}} \right) \geqslant \hfill \\ \geqslant \left( {f,\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + F(t)\left[ {\upsilon (0) - \frac{{\partial u}}{{\partial t}}(0,t)} \right],t > 0,\forall \upsilon \in H^1 (0,1), \hfill \\ \end{gathered} $$ which is a model for the dynamics of a pile driven into the ground under the action of a pile hammer. In (QVI) (...) is the scalar product inL 2(0, 1) andJ(u;.) is a convex functional onH 1(0, 1), for eachu, describing the soil-pile friction effect.  相似文献   

18.
§ 1 IntroductionThe deformations of an elastic beam are described by a fourth-order two-pointbound-ary value problem[1 ] .The boundary conditions are given according to the controls at theends of the beam. For example,the nonlinear fourth order problemu(4) (x) =λa(x) f(u(x) ) ,u(0 ) =u′(0 ) =u′(1 ) =u (1 ) =0 (1 .1 ) λdescribes the deformations of an elastic beam whose one end fixed and the other slidingclamped.The existence of solutions of (1 .1 ) λhas been studied by Gupta[1 ] . But …  相似文献   

19.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

20.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号