首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isotropic chemical shift and the nuclear quadrupole coupling constant for (14)N were obtained for 14 inorganic nitrates by solid-state MAS NMR measurements at two different field strengths, 9.4 and 11.7 T. The compounds studied were polycrystalline powders of AgNO(3), Al(NO(3))(3), Ba(NO(3))(2), Ca(NO(3))(2), CsNO(3), KNO(3), LiNO(3), Mg(NO(3))(2), NaNO(3), Pb(NO(3))(2), RbNO(3), Sr(NO(3))(2), Th(NO(3))(4)center dot4H(2)O, and UO(2)(NO(3))(2)center dot3H(2)O. Even though the spectra show broadening due to (14)N quadrupole interactions, linewidths of a few hundred hertz and a good signal-to-noise ratio were achieved. From the position of the central peaks at the two fields, the chemical shifts and the nuclear quadrupole coupling constants were calculated. The chemical shifts for all compounds studied range from 282 to 342 ppm with respect to NH(4)Cl. The nuclear quadrupole coupling constants range from 429 kHz for AgNO(3) to 993 kHz for LiNO(3). These data are compared with those available in the literature.  相似文献   

2.
In the past few years, solid-state 1H NMR spectroscopy under fast magic-angle spinning (MAS) has developed into a versatile tool for elucidating structure and dynamics. Dipolar multiple-quantum (MQ), in particular double-quantum (DQ), MAS spectroscopy has been applied to a variety of materials and provided unique insight, e.g., into the structure of hydrogen-bonded systems. This review intends to present solid-state 1H DQ and MQ MAS spectroscopy in a systematic fashion with a particular emphasis on methodological aspects, followed by an overview of applications.  相似文献   

3.
59Co triple-quantum (3Q) MAS and single-pulse MAS NMR spectra of K3Co(CN)6 have been obtained at 14.1 T and used in a comparison of these methods for determination of small chemical shift anisotropies for spin I = 7/2 nuclei. From the 3QMAS NMR spectrum a spinning sideband manifold in the isotropic dimension with high resolution is reconstructed from the intensities of all spinning sidebands in the 3QMAS spectrum. The chemical shift anisotropy (CSA) parameters determined from this spectrum are compared with those obtained from MAS NMR spectra of (i) the complete manifold of spinning sidebands for the central and satellite transitions and of (ii) the second-order quadrupolar lineshapes for the centerband and spinning sidebands from the central transition. A good agreement between the three data sets, all of high precision, is obtained for the shift anisotropy (delta(sigma) = delta(iso) - delta(zz)) whereas minor deviations are observed for the CSA asymmetry parameter (eta(sigma)). The temperature dependence of the isotropic 59Co chemical shift has been studied over a temperature range from -28 to +76 degrees C. A linear and positive temperature dependence of 0.97 ppm/degree C is observed.  相似文献   

4.
Despite success of previous studies, high-resolution solid-state NMR (SSNMR) of paramagnetic systems has been still largely unexplored because of limited sensitivity/resolution and difficulty in assignment due to large paramagnetic shifts. Recently, we demonstrated that an approach using very-fast magic angle spinning (VFMAS; spinning speed 20kHz) enhances resolution/sensitivity in (13)C SSNMR for paramagnetic complexes [Y. Ishii, S. Chimon, N.P. Wickramasinghe, A new approach in 1D and 2D (13)C high resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning, J. Am. Chem. Soc. 125 (2003) 3438-3439]. In this study, we present a new strategy for sensitivity enhancement, signal assignment, and distance measurement in (13)C SSNMR under VFMAS for unlabeled paramagnetic complexes using recoupling-based polarization transfer. As a robust alternative of cross-polarization (CP), rapid application of recoupling-based polarization transfer under VFMAS is proposed. In the present approach, a dipolar-based analog of INEPT (dipolar INEPT) methods is used for polarization transfer and a (13)C signal is observed under VFMAS without (1)H decoupling. The resulting low duty factor permits rapid signal accumulation without probe arcing at recycle times ( approximately 3 ms/scan) matched to short (1)H T(1) values of small paramagnetic systems ( approximately 1 ms). Experiments on Cu(dl-Ala)(2) showed that the fast repetition approach under VFMAS provided sensitivity enhancement by a factor of 8-66 for a given sample, compared with the (13)C MAS spectrum under moderate MAS at 5kHz. The applicability of this approach was also demonstrated for a more challenging system, Mn(acac)(3), for which (13)C and (1)H paramagnetic shift dispersions reach 1500 and 700 ppm, respectively. It was shown that effective-evolution-time dependence of transferred signals in dipolar INEPT permitted one to distinguish (13)CH, (13)CH(2), (13)CH(3), (13)CO2- groups in 1D experiments for Cu(DL-Ala)(2) and Cu(Gly)(2). Applications of this technique to 2D (13)C/(1)H correlation NMR under VFMAS yielded reliable assignments of (1)H resonances as well as (13)C resonances for Cu(DL-Ala)(2) and Mn(acac)(3). Quantitative analysis of cross-peak intensities in 2D (13)C/(1)H correlation NMR spectra of Cu(DL-Ala)(2) provided distance information between non-bonded (13)C-(1)H pairs in the paramagnetic system.  相似文献   

5.
Free induction decay (FID) signals in solid state NMR measurements performed with magic angle spinning can often be extended in time by factors on the order of 10 by a simple pulsed spin locking technique. The sensitivity of a structural measurement in which the structural information is contained in the dependence of the integrated FID amplitude on a preceding evolution period can therefore be enhanced substantially by pulsed spin locking in the signal detection period. We demonstrate sensitivity enhancements in a variety of solid state NMR techniques that are applicable to selectively isotopically labeled samples, including 13C-15N rotational echo double resonance (REDOR), 13C-13C dipolar recoupling measurements using the constant-time finite-pulse radio-frequency-driven recoupling (fpRFDR-CT) and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) techniques, and torsion angle measurements using the double quantum chemical shift anisotropy (DQCSA) technique. Further, we demonstrate that the structural information in the solid state NMR data is not distorted by pulsed spin locking in the detection period.  相似文献   

6.
An improved 2D (13)C-(13)C CP(3) MAS NMR correlation experiment with mixing by true (1)H spin diffusion is presented. With CP(3), correlations can be detected over a much longer range than with direct (1)H-(13)C or (13)C-(13)C dipolar recoupling. The experiment employs a (1)H spin diffusion mixing period tau(m) sandwiched between two cross-polarization periods. An optimized CP(3) sequence for measuring polarization transfer on a length scale between 0.3 and 1.0 nm using short mixing times of 0.1 ms < tau(m) < 1 ms is presented. For such a short tau(m), cross talk from residual transverse magnetization of the donating nuclear species after a CP can be suppressed by extended phase cycling. The utility of the experiment for genuine structure determination is demonstrated using a self-aggregated Chl a/H(2)O sample. The number of intramolecular cross-peaks increases for longer mixing times and this obscures the intermolecular transfer events. Hence, the experiment will be useful for short mixing times only. For a short tau(m) = 0.1 ms, intermolecular correlations are detected between the ends of phytyl tails and ring carbons of neighboring Chl a molecules in the aggregate. In this way the model for the structure, with stacks of Chl a that are arranged back to back with interdigitating phytyl chains stretched between two bilayers, is validated.  相似文献   

7.
Experiences obtained from recent improvements in the performance of solid-state (14)N MAS NMR spectroscopy have been used in a natural abundance (33)S MAS NMR investigation of the satellite transitions for this interesting spin I=3/2 isotope. This study reports the first observation of manifolds of spinning sidebands for these transitions in (33)S MAS NMR as observed for the two alums XAl(SO(4))(2) x 12H(2)O with X=NH(4) and K. For the NH(4)-alum a variable temperature (33)S MAS NMR study, employing the satellite transitions, shows that the (33)S quadrupole coupling constant (C(Q)) exhibits a linear temperature dependence (in the range -35 degrees C to 70 degrees C) with a temperature gradient of 3.1 kHz/ degrees C and undergoes a sign change with zero-crossing for C(Q) at 4 degrees C (277 K). For the isostructural K-alum a quite similar increase in the magnitude of C(Q) with increasing temperature is observed, and with a temperature gradient of 2.3 kHz/ degrees C. Finally, for optimization purposes, a study on the effect of the applied pulse widths at constant rf field strength on the intensity and variation in second-order quadrupolar lineshape for the central (1/2<-->-1/2) transition of the K-alum has been performed.  相似文献   

8.
A new two-dimensional solid-state NMR experiment, which correlates slow and fast chemical shift anisotropy sideband patterns is proposed. The experiment, dubbed ROSES, is performed under fast magic-angle spinning and leads to an isotropic spectrum in the directly detected omega(2) dimension. In the evolution dimension omega(1), the isotropic chemical shift is reduced by a factor S, and spinning sidebands are observed spaced by a scaled effective spinning speed omega(R)/S. These spinning sidebands patterns are not identical to those observed with standard slow magic-angle spinning experiments. Chemical shift anisotropy parameters can be accurately extracted with standard methods from these spinning sideband patterns. The experiment is demonstrated with carbon-13 experiments on powdered samples of a dipeptide and a cyclic undecapeptide, cyclosporin-A.  相似文献   

9.
It was recently demonstrated that the nuclear magnetic resonance (NMR) linewidths for stationary biological samples are dictated mainly by magnetic susceptibility gradients, and that phase-altered spinning sideband (PASS) and phase-corrected magic angle turning (PHORMAT) solid-state NMR techniques employing slow and ultra-slow magic angle spinning (MAS) frequencies can be used to overcome the static susceptibility broadening to yield high-resolution, spinning sideband (SSB)-free 1H NMR spectra [Magn. Reson. Med. 46 (2001) 213; 47 (2002) 829]. An additional concern is that molecular diffusion in the presence of the susceptibility gradients may limit the minimum useful MAS frequency by broadening the lines and reducing SSB suppression at low spinning frequencies. In this article the performance of PASS, PHORMAT, total sideband suppression (TOSS), and standard MAS techniques were evaluated as a function of spinning frequency. To this end, 300MHz (7.05T) 1H NMR spectra were acquired via PASS, TOSS, PHORMAT, and standard MAS NMR techniques for a 230-microm-diameter spherical glass bead pack saturated with water. The resulting strong magnetic susceptibility gradients result in a static linewidth of about 3.7kHz that is larger than observed for a natural biological sample, constituting a worst-case scenario for examination of susceptibility broadening effects. RESULTS: (I) TOSS produces a distorted centerband and fails in suppressing the SSBs at a spinning rate below approximately 1kHz. (II) Standard MAS requires spinning speeds above a few hundred Hz to separate the centerband from the SSBs. (III) PASS produces nearly SSB-free spectra at spinning speeds as low as 30Hz, and is only limited by T(2)-induced signal losses. (IV) With PHORMAT, a SSB-free isotropic projection is obtained at any spinning rate, even at an ultra-slow spinning rate as slow as 1Hz. (V) It is found empirically that the width of the isotropic peak is proportional to F(-x), where F is the spinning frequency, and x=2 for MAS, 0.84 for PASS, and 0.5 for PHORMAT.  相似文献   

10.
Chemical shift referencing in MAS solid state NMR   总被引:7,自引:0,他引:7  
Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.  相似文献   

11.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of 13C CSA and 13C–1H dipolar coupling in a disaccharide, α,α- -trehalose, at natural abundance of 13C as well as interference of amide 15N CSA and 15N–1H dipolar coupling in uniformly 15N-labeled ubiquitin. We demonstrate that the standard heteronuclear T1, T2, and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

12.
The supramolecular 1:1 host-guest inclusion compound, p-tert-butylcalix[4]arene x alpha,alpha,alpha-trifluorotoluene, 1, is characterized by 19F and 13C solid-state NMR spectroscopy. Whereas the 13C NMR spectra are easily interpreted in the context of earlier work on similar host-guest compounds, the 15F NMR spectra of solid 1 are, initially, more difficult to understand. The 19F[1H] NMR spectrum obtained under cross-polarization and magic-angle spinning conditions shows a single isotropic resonance with a significant spinning sideband manifold. The static 19F[1H] CP NMR spectrum consists of a powder pattern dominated by the contributions of the anisotropic chemical shift and the homonuclear dipolar interactions. The 19F MREV-8 experiment, which minimizes the 19F-19F dipolar contribution, helps to identify the chemical shift contribution as an axial lineshape. The full static 19F[1H] CP NMR spectrum is analysed using subspectral analysis and subsequently simulated as a function of the 19F-19F internuclear distance (D(FF) = 2.25 +/- 0.01 A) of the rapidly rotating CF3 group without including contributions from additional libration motions and the anisotropy in the scalar tensor. The shielding span is found to be 56 ppm. The width of the centerband in the 19F[1H] sample-spinning CP NMR spectrum is very sensitive to the angle between the rotor and the magnetic field. Compound 1 is thus an attractive standard for setting the magic angle for NMR probes containing a fluorine channel with a proton-decoupling facility.  相似文献   

13.
14.
In this paper, we report our initial results on studying magnetically aligned phospholipid bilayers (bicelles) at high magnetic fields (approximately 3.4 T) with electron paramagnetic resonance (EPR) spectroscopy at 95 GHz (W-band). In order to characterize this system for W-band EPR studies, we have utilized the nitroxide spin probe 3beta-doxyl-5alpha-cholestane to demonstrate the effects of macroscopic bilayer alignment. At W-band due to the increase in magnetic field strength (when compared to X-band studies at 9.5 GHz) (S. M. Garber et al., J. Am. Chem. Soc. 121, 3240-3241 (1999)), we were able to examine magnetically aligned phospholipid bilayers at two orientations with the bilayer normal oriented either perpendicular or parallel (upon addition of YbCl3) with respect to the direction of the static magnetic field. Additionally, at a magnetic field of 3.4 T (g=2 resonance at W-band), we were able to study the parallel alignment with a lower concentration of Yb3+, thereby eliminating the possible unwanted effects associated with lanthanide-protein interactions and paramagnetic shifts and/or line broadening induced by the lanthanide ions. The development of this new spin label alignment technique will open up a whole new area of investigation for phospholipid bilayer systems and membrane protein EPR studies at high magnetic fields.  相似文献   

15.
16.
Numerical simulations of magic-angle spinning (MAS) spectra of dipolar-coupled nuclear spins have been used to assess different approaches to the quantification of dipolar couplings from 1H solid-state NMR. Exploiting the translational symmetry of periodic spin systems allows extended networks with ‘realistic’ numbers of spins to be considered. The experimentally accessible parameter is shown to be the root-sum-square of the dipolar couplings to a given spin. The effectiveness of either fitting the resulting spinning sideband spectra to small spin system models, or using analyses based on moment expansions, has been examined. Fitting of the spinning sideband pattern is found to be considerably more robust with respect to experimental noise than frequency domain moment analysis. The influence of the MAS rate and system geometry on robustness of the quantification is analysed and discussed.  相似文献   

17.
We illustrate an approach that uses the backbone carbonyl chemical shift to relieve resonance overlaps in triple-resonance assignment experiments conducted on protein samples. We apply this approach to two cases of simultaneous overlaps: those of ((1)H(N), (15)N) spin pairs and those of ((1)H(alpha), (13)C(alpha)) spin pairs in residues preceding prolines. For these cases we employed respectively CBCACO(N)H and H(CA)CON experiments, simple variants of the commonly used CBCA(CO)NH and HCA(CO)N experiments obtained by replacing one of the indirect dimensions with a carbonyl dimension. We present data collected on ribosomal protein S4 using these experiments, along with overlap statistics for four other polypeptides ranging in size from 76 to 263 residues. These data indicate that the CBCACO(N)H, in combination with the CBCA(CO)NH, can relieve >83% of the ((1)H(N), (15)N) and ((1)H(N), (13)C') overlaps for these proteins. The data also reveal how the H(CA)CON experiment successfully completed the assignment of triply and quadruply degenerate X-Pro spin systems in a mobile, proline-rich region of S4, even when X was a glycine. Finally, we discuss the relative sensitivities of these experiments compared to those of existing sequences, an analysis that reinforces the usefulness of these experiments in assigning extensively overlapped and/or proline-rich sequences in proteins.  相似文献   

18.
An experiment is presented that enables the measurement of small chemical shift anisotropy tensors under fast magic-angle spinning (MAS). The two-dimensional spectra obtained give a fast MAS sideband pattern in the directly observed dimension with the spinning sideband intensities equivalent to the chemical shift anisotropy scaled by a factor of N, or equivalently the sample spinning frequency scaled by 1/N, in the indirectly observed dimension. The scaling factor may be arbitrarily varied by changing the number and timings of the rotor synchronized pi-pulses used. Desirable features of the experiment include a fixed length pulse sequence and efficient sampling of the indirectly observed dimension. In addition, neither quadrature detection in the indirect dimension nor storage periods are required, consequently no signal intensity is discarded by the pulse sequence. The experiment is demonstrated using (31)P NMR of sodium phosphate and (13)C NMR of fumaric acid monoethyl ester for which a scaling factor of N=10.2 was employed.  相似文献   

19.
When observing spin I = (1/2) nuclei with important chemical shift anisotropy in disordered materials, the distribution of isotropic shift can become so large that no accessible spinning rate is able to provide a resolved spectrum. This is the case of 207Pb in glasses where static and high-speed MAS spectra are nearly identical. It is still possible in such a case to rebuild a spinning sideband free spectrum using a shifted echo modified PASS sequence. This makes it possible to discuss isotropic and anisotropic chemical shifts of lead in phosphate glasses, to characterize its structural role and its chemical bonding state.  相似文献   

20.
Recovery of the magnetic dipolar interaction between nuclei bearing the same gyromagnetic ratio in rotating solids can be promoted by synchronous rf irradiation. Determination of the dipolar interaction strength can serve as a tool for structural elucidation in polycrystalline powders. Spinning frequency dependent narrow-band (nb) RFDR and SEDRA experiments are utilized as simple techniques for the determination of dipolar interactions between the nuclei in coupled homonuclear spin pairs. The magnetization exchange and coherence dephasing due to a fixed number of rotor-synchronously applied pi-pulses is monitored at spinning frequencies in the vicinity of the rotational resonance (R(2)) conditions. The powder nbRFDR and nbSEDRA decay curves of spin magnetizations and coherences, respectively, as a function of the spinning frequency can be measured and analyzed using simple rate equations providing a quantitative measure of the dipolar coupling. The effects of the phenomenological relaxation parameters in these rate equations are discussed and an improved methodology is suggested for analyzing nbRFDR data for small dipolar couplings. The distance between the labeled nuclei in the 1,3-(13)C(2)-hydroxybutyric acid molecule is rederived using existing nbRFDR results and the new simulation procedure. A nbSEDRA experiment has been performed successfully on a powder sample of singly labeled 1-(13)C-L-leucine measuring the dipolar interaction between the labeled carboxyl carbon and the natural abundant beta-carbon. Both narrowband techniques are employed for the determination of the nuclear distances between the side-chain carbons of leucine and its carbonyl carbon in a tripeptide Leu-Gly-Phe that is singly (13)C-labeled at the leucine carbonyl carbon position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号