首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron spin resonance spectra of Mn2+ in diluted solid solutions of MnO2 in Y2O3 have been studied at room temperature for Mn concentrations between 0.20 and 2.00 mol%. Isolated Mn2+ ions in sites with two different symmetries were observed, as well as Mn2+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Mn2+ ions decreases with increasing manganese concentration. The results are consistent with the assumption that the manganese ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Mn2+ ions of 0.53 nm, of the same order as that of Mn2+ ions in CaO.  相似文献   

2.
Li2O-CaF2-P2O5 glasses mixed with different concentrations of Cr2O3 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS), differential thermal analysis and conventional spectroscopic techniques. The X-ray diffraction and scanning electron microscopic studies reveal the presence of lithium phosphate, calcium phosphate and chromium phosphate (complexes of Cr3+, Cr5+ and Cr6+ ions) crystal phases. The study on DTA suggests that the crystallization is predominantly due to the surface crystallization when the concentration of nucleating agent Cr2O3 is around 0.8 mol%. The IR and Raman spectral studies of these samples indicate that the sample crystallized with 0.8 mol% Cr2O3 is more compact and possesses high rigidity due to the presence of chromium ions largely in tetrahedral positions.  相似文献   

3.
Magnesium aluminate (MgAl2O4) doped with trivalent chromium (Cr3+) was synthesized by the combustion method. The prepared sample was characterized by X-ray powder diffraction, Brunauer-Emmet-Teller (BET) adsorption isotherms and diffuse-reflectance UV-vis spectroscopy techniques. Electron paramagnetic resonance (EPR) and photoluminescence (PL) studies have been performed at room temperature and at 110 K. The EPR spectrum exhibit resonance signals at g=5.37, 4.53, 3.82, 2.26 and 1.96 characteristic of Cr3+ ions. The luminescence of Cr3+-activated MgAl2O4 exhibits a red emission peak around 686 nm from the synthesized phosphor particles upon 551 nm excitation. The luminescence is assigned to a transition from the upper 2Eg4A2g ground state of Cr3+ ions. By correlating EPR and optical data the crystal field splitting parameter (Dq), Racah inter-electronic repulsion parameter (B) and the bonding parameters have been evaluated and discussed. The bonding parameters suggests that the ionic nature of Cr3+ ions with the ligands and the Cr3+ ions are in distorted octrahedral environment.  相似文献   

4.
Electron magnetic resonance (EMR) spectra of gadolinium-doped calcium fluoride have been studied at room temperature for Gd concentrations between 0.01 and 2.00 mol%. Gd3+ ions in sites with two different symmetries were observed. One of the sites, with cubic symmetry, is unstable at room temperature and decays with a time constant of 2.2 day−1. The other site, with tetragonal symmetry, is stable and is attributed to Gd3+ ions in substitutional sites next to a charge-compensating F interstitial ion. The linewidth and intensity of the EMR spectrum with tetragonal symmetry increase with increasing Gd concentration. A theoretical calculation based on the concentration dependence of the EMR linewidth yields an effective range of the exchange interaction between Gd3+ ions in CaF2 of 0.774 nm, of the same order as that of Gd3+ ions in other cubic ionic compounds.  相似文献   

5.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

6.
Divalent and trivalent chromium ions Cr2+ and Cr3+ replacing magnesium ions at octahedral positions in Mg2SiO4: Cr and Mg2SiO4: Cr: Li crystals are investigated by submillimeter EPR spectroscopy in the frequency range 65–230 GHz. The crystals are grown from the melt by the Czochralski method. The content of mixed-valence chromium species in forsterite is analyzed. It is demonstrated that, in crystals grown in argon (the oxygen partial pressure is \(P_{O_2 } \) = 0.01 kPa), approximately half of the chromium ions are in the divalent form. The Cr2+ ions are distributed over the M1 and M2 positions in a ratio of approximately 2: 1. A change in the oxygen partial pressure \(P_{O_2 } \) and the chromium concentration, as well as an additional doping with lithium, does not lead to substantial changes in the distribution of divalent chromium ions over the positions. It is shown that an increase in the oxygen partial pressure \(P_{O_2 } \) from 0.01 to 2.00 kPa results in a decrease in the coefficient of divalent chromium distribution between the crystal and the melt. Doping with lithium also decreases the concentration of Cr2+ centers. In crystals grown without lithium, approximately half of the trivalent chromium ions are associated with magnesium vacancies. The addition of lithium leads to the destruction of these associates, an increase in the concentration of individual Cr3+ centers, and the formation of lithium associates with trivalent chromium ions. The conditions for the formation of associates of trivalent chromium ions with lithium ions are optimum when the crystal contains approximately identical amounts of Cr3+ and Li+ ions. Doping with lithium increases the concentration of Cr3+ ions and, thus, decreases the fraction of Cr2+ and Cr4+ ions in the total content of chromium centers.  相似文献   

7.
Cr-doped mullites were prepared from single-phase precursors containing up to 9.60 wt% Cr2O3 using a sol-gel technique followed by thermal treatment. Particle induced X-ray emission spectroscopy and X-ray powder diffraction were used to characterize the samples. Mullites were orthorhombic, space group Pbam. Cr doping caused the increase of unit-cell parameters. Strongest expansion was noticed along c-axis followed by a and bc/c=0.089, Δa/a=0.061, Δb/b=0.045% per mole Cr2O3). A second phase, namely θ-(Al,Cr)2O3, was revealed by XRD in the sample containing 9.60 wt% Cr2O3. The structure of mullites was refined by the Rietveld method, location of Cr3+ was performed by the EPR spectroscopy. At low chromium doping level (Cr2O3 content less than ∼5 wt%) Cr3+ ions were substituted for Al3+ in the AlO6 octahedra of the mullite structure (M1 site). For higher doping level, Cr3+ ions were additionally substituted for Al3+ in the AlO6 octahedra of the second phase [θ-(Al,Cr)2O3 at 1400 °C, or α-(Al,Cr)2O3 at 1600 °C] which segregated in the system. Substitution of Cr3+ for Al3+ on M1 site in the mullite structure resulted in increase of average distances in (M1)O6 octahedron and decrease of average distances in T*O4 tetrahedron, while average distances in TO4 tetrahedron stayed almost constant.  相似文献   

8.
The Cr-substituted M-type barium hexaferrites, BaFe12−xCrxO19, with x=0.0–0.8x=0.00.8 have been successfully prepared by nitrate–citrate auto-combustion process using citric acid as a fuel/reductant and nitrates as oxidants. The resulting precursors were calcined at 1100 °C for 1 h and followed by sintering at 1200 °C for 12 h in oxygen atmosphere. The ferrites were systematically investigated by using powder X-ray diffractometer (XRD), magnetic hysteresis recorder, Mössbauer spectrometer, and scanning electron microscope (SEM). The XRD data show the formation of pure magnetoplumbite phase without any other impurity phases. Both a and c lattice parameters calculated by the Rietveld method systematically decrease with increasing Cr content. The effects of Cr3+ ions on the barium ferrites were reported and discussed in detail. The site preference of Cr3+ and magnetic properties of the ferrites have been studied using Mössbauer spectra and hystereses. The results show that the magnetic properties are closely related to the distributions of Cr3+ ions on the five crystallographic sites. The saturation magnetization systematically decreases, however, the coercivity increases with Cr concentration. The magnetization and Mössbauer results indicate that the Cr3+ ions preferentially occupy the 2a, 12k, and 4fVI sites. The average size of hexagonal platelets obtained by SEM photographs tends to decrease with respect to Cr content.  相似文献   

9.
The electron paramagnetic resonance spectra of isolated and dimer impurity centers of trivalent chromium ions in the octahedral Ml sites in synthetic forsterite are studied in the frequency range of 65–90 GHz. The measurements are performed at 4.2 K in magnetic field from ?0.04 to 0.3 T. The zero-field splitting between spin doublets of the isolated Cr3+ ion Δs = 66.7 GHz and between spin sublevels of the Cr3+-Cr3+ dimer Δd1 = 71.5 GHz and Δd2 = 73.0 GHz is measured directly at zero field. The analysis of the spin Hamiltonian parameters shows that the dimer center consists of a pair of Cr3+ ions with an Mg2+ vacancy between them replacing three Mg2+ ions situated in a quasi-one-dimensional chain aligned parallel to the crystal c-axis. It is found that the exchange interaction in the dimer is ferromagnetic with parameters Jz = 0.47 GHz and Jt = 0.79 GHz.  相似文献   

10.
The manganates Sr4Mn3−xCrxO10 (x=0 and 0.2) have been synthesized by solid state reaction. Powder X-ray diffraction analysis shows orthorhombic symmetry with space group Cmca for both compounds. The magnetic susceptibility measurements show an antiferromagnetic transition at 192 and 176 K for x=0 and 0.2, respectively. The magnetic susceptibility data were estimated using a model based on spin exchange antiferromagnetic interactions in isolated (Mn4+) trimer; a paramagnetic contribution due to the chromium ions was added in the case of Cr-doped materials.  相似文献   

11.
This paper reports polarized spectral properties and energy levels of Cr3+ in KAl(MoO4)2 crystal. The absorption and emission cross sections are estimated as 3.72×10-20 cm2 at 669 nm and 2.74×10-20 cm-2 at 823 nm for σ-polarization, respectively. The energy levels of Cr3+ ion in KAl(MoO4)2 crystal were calculated based on the Tanabe-Sugano theory. It is suggested that Cr3+ ions occupy at an intermediate crystal field site in Cr3+:KAl(MoO4)2.  相似文献   

12.
Ca4Mn3−xCrxO10 compounds were synthesized in order to investigate the role of an isoelectronic substitution in the layered manganite. Induced structural changes are mainly described as a distortion of the two types of octahedra in the n=3 RP structure. The results indicate that Cr3+ is not the only significant valence state for chromium ions. Electrical and magnetic characterization allow to conclude that chromium does not favour the double exchange mechanism in these compounds.  相似文献   

13.
The effect of irradiation by ultraviolet light on the effective magnetic moment of a paramagnetic single crystal based on photochrome spiropyran (Sp) and chromium oxalates Sp3Cr(C2O4)3 molecules is detected. It is shown that the deviation of the temperature dependence of the magnetic moment from the Curie law is caused not by the exchange interaction, but by electron redistribution between Cr3+ and Cr4+ ions and spiropyran molecules Sp0 and Sp+. Analysis of the angular dependence of EPR spectra makes it possible to determine the contribution of Cr3+ ions to the magnetic properties of the crystals and to determine the crystal field parameters D = 0.619 cm−1 and E = 0.024 cm−1. Irradiation of hydrated samples by ultraviolet light leads to intensity redistribution of EPR lines attributed to Cr3+ and Sp0. Thermally stimulated paramagnetism of triplet states of spiropyran ions Sp+ and the SpI salt is observed.  相似文献   

14.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

15.
In the present paper, we report on consistent crystal field calculations of the Cr3+ ions energy levels in KAl(MoO4)2 using actual D3d site symmetry of the Cr3+ position and employing the exchange charge model (ECM) of the crystal field. In addition to the energy level calculations, the Huang-Rhys factor S=5.7 and effective phonon energy ?ω=268 cm-1 were evaluated in the single configurational coordinate model. Detailed treatment of the microscopic crystal field effects in the ECM framework allowed to obtain analytical dependence of the crystal field strength 10Dq on the Cr-O interionic distance and extracting from it the values of some parameters of the electron-vibrational interaction (EVI) in the KAl(MoO4)2:Cr3+ system. All obtained results are compared with experimental data and discussed; agreement between the calculated and experimental parameters is good.  相似文献   

16.
Electron paramagnetic resonance (EPR), optical absorption and emission spectra of Cr3+ ions doped in (30−x) (NaPO3)6+30PbO+40B2O3+xCr2O3 (x=0.5, 2.0, 3.0, 4.0 and 5.0 mol%) glasses have been studied. The EPR spectra exhibit resonance signals with effective g values at g≈4.55 and g≈1.97. The EPR spectra of x=3.0 mol% of Cr2O3 in sodium-lead borophosphate glass sample were studied at various temperatures (295-123 K). The intensity of the resonance signals increases with decrease in temperature. The optical absorption spectrum exhibits four bands characteristic of Cr3+ ions in octahedral symmetry. From the analysis of the bands, the crystal-field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The emission spectrum exhibit one broad band characteristic of Cr3+ ions in octahedral symmetry. This band has been assigned to the transition 4T2g (F)→4A2g (F). Correlating EPR and optical data, the molecular bonding coefficient (α) has been evaluated.  相似文献   

17.
Electron magnetic resonance (EMR) spectra of gadolinium-doped zircon (ZrSiO4) powders have been studied at room temperature for gadolinium concentrations between 0.20 and 1.0 mol%. The results suggest that Gd3+ ions occupy substitutional sites in the zircon lattice, that the electron magnetic resonance linewidth increases with increasing gadolinium concentration and that the range of the exchange interaction between Gd3+ ions is about 1.17 nm, larger than that of the same ion in other host lattices, such as ceria (CeO2), strontium oxide (SrO) and calcium oxide (CaO). The fact that the electron magnetic resonance linewidth of the Gd3+ ion in polycrystalline zircon increases, regularly and predictably, with Gd concentration, shows that the Gd3+ ion can be used as a probe to study, rapidly and non-destructively, the crystallinity and degradation of ZrSiO4.  相似文献   

18.
Differential scanning calorimetric studies, spectroscopic studies (viz., optical absorption, ESR, infrared spectra) and thermoluminescence studies of ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with different concentrations of chromium ions have been investigated. Results have been analyzed in the light of different oxidation states of chromium ion. The analysis indicates chromium ions mostly exist in Cr3+ state in ZT, CT and PT glasses when Cr2O3 is present upto 0.1%, 0.2% and 0.3%, respectively; these ions seems to be present in Cr6+ state that take part network forming positions with CrO42− structural groups in all the three glasses when the concentration of Cr2O3 is greater than the above quantities. Quenching of thermoluminescence light output of the glasses has been observed with increase in Cr2O3 concentration upto 0.1%, 0.2% and 0.3%, respectively in ZT, CT and PT glasses. This has been identified due to the killing effect of Cr3+ ions. Further it has also been concluded that ZnF2-PbO-TeO2 is more favourable glass network for the presence of large concentration of laser-emitting Cr3+ ions, among the three glass series studied.  相似文献   

19.
The effect of Cr-doping on the structural, magnetic and transport properties of perovskite manganites La0.8Ca0.2Mn1−xCrxO3 (0≤x≤0.7) has been investigated. The Curie temperature (TC) of the Cr-doped samples is almost unchanged up to 30% of Cr-doping. The Cr-doped samples, however, undergo a transition from the parent metallic state to the insulating state below TC. The dc and ac magnetization data suggest that ferromagnetic clusters induced by double exchange interaction between Cr3+ and Mn3+ ions and antiferromagnetic components driven by Cr3+/Mn4+ and Cr3+/Cr3+ interactions are present in the Cr-doped system, which is supported by comparative studies on magnetic and transport properties of LaMnO3+δ and LaMn0.75Cr0.25O3+δ.  相似文献   

20.
Crystal-field infrared active excitations and photoluminescence of Nd3+ ions in weakly doped LiYF4 have confirmed that the concentration dependent satellite lines accompanying the Nd3+ crystal-field optical transitions are due to four ferromagnetically coupled pairs of Nd3+ ions in undistorted Y3+ sites with the exchange energies J1=0.9, J2=1.6, J3=3.1 and J4=4.5 cm−1, respectively. A linear Zeeman splitting of the Nd3+ ion 4F3/24I9/2 transition is observed and the g-factors (g=0.2±0.1; g=0.97±0.01) associated with the 4F3/2 lowest level are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号