首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic Compton profiles (MCP) have been measured in the [100], [110] and [001] directions on the single crystals of La2−2xSr1+2xMn2O7 (x=0.30, 0.35 and 0.42) at 10 K. The occupation numbers in t2g and two eg type orbitals (x2y2 and 3z2r2) of Mn-3d state are evaluated from the line-shape analysis of MCP's in the [001] direction by using theoretical profiles derived from the ab initio calculations for (MnO6)8−cluster. It has been found that the eg state is dominated by the x2y2 type orbital at every hole concentration, x, and the 3z2r2 type orbital population decreases with increasing x. From the result, the connections of eg orbital state with the electron correlation effect, exchange interactions, lattice distortion and electronic inhomogeneity are discussed.  相似文献   

2.
冯宏剑  刘发民 《中国物理 B》2008,17(5):1874-1880
First-principles calculations have been performed to investigate the ground state electronic properties of BaFeO3 (BFO). Local spin density approximation (LSDA) plus U (LSDA+U) treatment modified the metallic behaviour to insulated one with a band gap of 4.12eV. The spontaneous polarization was found to be 89.3\muC/cm2 with Berry phase scheme in terms of the modern theory of polarization. Fe-3d eg were split into two singlet states (dz2 and d x2-y2}), and Fe-3d t2g were split into one doublet states(dxz and dyz) and one singlet states(dxy) after Fe and O displaced along the c axis. Meanwhile the occupation numbers of dz2, dyz, dxz and OT pz (on the top of Fe) were increased at the expense of those in xy plane. Our results showed that it was the sensitivity of hybridization to ferroelectric distortions, not just the total change of hybridization, that produced the possibility of ferroelectricity. Moreover, the increasing occupation numbers of OT pz and Fe dz2 favoured the 180o coupling between Fe-3d eg and Fe-3d t2g, leading to ferromagnetic ordering, which has been confirmed by the increase of magnetic moment by 0.13μB per formula unit in the polarized direction. Hence, the magnetization can be altered by the reversal of external electric field.  相似文献   

3.
Optical transitions in normal-spinel Co3O4 have been identified by investigating the variation of its optical absorption spectrum with the replacement of Co by Zn. Three optical-transition structures were located at about 1.65, 2.4, and 2.8 eV from the measured dielectric function of Co3O4 by spectroscopic ellipsometry. The variation of the absorption structures with the Zn substitution (ZnxCo3−xO4) can be explained in terms of charge-transfer transitions involving d states of Co ions. The 1.65 eV structure is assigned to a d-d charge-transfer transition between the t2g states of octahedral Co3+ ion and t2 states of tetrahedral Co2+ ion, t2g(Co3+)→t2(Co2+). The 2.4 and 2.8 eV structures are interpreted as due to charge-transfer transitions involving the p states of O2− ion: p(O2−)→t2(Co2+) for the 2.4 eV absorption and p(O2−)→eg(Co3+) for the 2.8 eV absorption. The observed gradual reduction of the 1.65 and 2.4 eV absorption strength with the increase of the Zn composition for ZnxCo3−xO4 can be explained in terms of the substitution of the tetrahedral Co2+ sites by Zn2+ ions. The crystal-field splitting ΔOh between the eg and the t2g states of the octahedral Co3+ ion is estimated to be 2 eV.  相似文献   

4.
We study the Klein-Gordon and Dirac equations in the presence of a background metric ds2=−dt2+dx2+e−2gx(dy2+dz2) in a semi-infinite lab (x>0). This metric has a constant scalar-curvature R=6g2 and is produced by a perfect fluid with equation of state p=−ρ/3. The eigenfunctions of spin-0 and spin-1/2 particles are obtained exactly, and the quantized energy eigenvalues are compared. It is shown that both of these particles must have nonzero transverse momentum in this background. We show that there is a minimum energy E2min=m2c4+g2c2?2 for bosons (EKG>Emin), while the fermions have no specific ground state (EDirac>mc2).  相似文献   

5.
Visible photoluminescence and its temperature dependence of La2/3Ca1/3MnO3 in the temperature range 138-293 K were measured. It was observed that the main broad band centered at ∼1.77 eV with the shoulders at ∼1.57 and ∼1.90 eV existed in the entire temperature range. It can be well fitted by three Gaussian curves B1, B2 and B3 centered at ∼1.52, ∼1.75 and ∼1.92 eV, respectively. The intensities of the peak B1 and B2 vary as temperature increases. In the entire temperature range, the intensity of B1 increases with increasing temperature, whereas that of B2 decreases. The photoluminescence mechanisms for La2/3Ca1/3MnO3 are presented based on the electronic structures formed by the interactions among spin, charge and lattice, in which B1 was identified with the charge transfer excitation of an electron from the lower Jahn-Teller split eg level of a Mn3+ ion to the eg level of an adjacent Mn4+ ion, B2 is assigned to the transition between the spin up and spin down eg bands separated by Hund's coupling energy EJ and B3 is attributed to the transition, determined by the crystal field energy EC, between a t2g core electron of Mn3+ to the spin up eg bands of Mn4+ by a dipole allowed charge transfer process.  相似文献   

6.
AWO4 (A = Ca, Sr) was prepared from metal salts [Ca(NO3)2·4H2O or Sr(NO3)2], Na2WO4·2H2O and different moles of cetyltrimethylammonium bromide (CTAB) in water by cyclic microwave irradiation. The structure of AWO4 was characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the presence of nanoparticles in clusters with different morphologies; spheres, peaches with notches, dumb-bells and bundles, influenced by CTAB. Six Raman vibrational peaks of scheelite structure were detected at 908, 835, 793, 399, 332 and 210 cm−1 for CaWO4 and 917, 833, 795, 372, 336 and 192 cm−1 for SrWO4, which are assigned as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag), respectively. Fourier transform infrared (FTIR) spectra provided the evidence of W-O stretching vibration in [WO4]2− tetrahedrons at 793 cm−1 for CaWO4 and 807 cm−1 for SrWO4. The peaks of photoluminescence (PL) spectra were at 428-434 nm for CaWO4, and 447-451 nm for SrWO4.  相似文献   

7.
Spinel LiNixMn2−xO4 (x≤0.9) thin films were synthesized by a sol-gel method employing spin-coating. The Ni-doped films were found to maintain cubic structure at low x but to exhibit a phase transition to tetragonal structure for x≥0.6. Such cubic-tetragonal phase transition can be explained in terms of Ni3+(d7) ions with low-spin (t2g6,eg1) configuration occupying the octahedral sites of the compound, thus being subject to the Jahn-Teller effect. By X-ray photoelectron spectroscopy both Ni3+ and Ni2+ ions were detected where Ni2+ is more populated than Ni3+. Optical properties of the LiNixMn2−xO4 films were investigated by spectroscopic ellipsometry in the visible-ultraviolet range. The measured dielectric function spectra mainly consist of broad absorption structures attributed to charge-transfer transitions, O2−(2p)→Mn4+(3d) for 1.9 (t2g) and 2.8-3.0 eV (eg) structures and O2−(2p)→Mn3+(3d) for 2.3 (t2g) and 3.4-3.6 eV (eg) structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as being due to d-d crystal-field transitions within the octahedral Mn3+ ion. In terms of these transitions, the evolution of the optical absorption spectrum of LiMn2O4 by Ni doping could be explained and the related electronic structure parameters were obtained.  相似文献   

8.
Several vibronic bands associated with v′=0, 1, and 2 for the B3Π-X3Δ transition of TiO have been observed using a dispersed laser induced fluorescence (DLIF) technique. From intensity distributions of the DLIF spectra, the dependence of the electronic transition moment Re(r) for the B3Π-X3Δ system was determined as a function of the internuclear distance r. For the determination of the Re(r) function, a merged fit of the observed distributions, the reported radiative lifetimes of three vibrational levels in the B3Π state, and the reported value of Re(r) for the (0, 0) band were performed; Re(r) was determined as Re(r)=1.3723(79)[1−0.316(81)(rr0)+2.0(10)(rr0)2](r0=1.6648 Å and 1.5131 Å≤r≤1.8636 Å). The r-dependence of Re(r) was much smaller than the reported theoretical predictions. The obtained values of Re(r) were analyzed simultaneously with the hyperfine coupling constants for the X3Δ state and the spin-orbit constants for the X3Δ and B3Π states to assess the ionic and orbital characters. It was found that the r-dependence of Re(r) could be accounted for by both the configuration interaction in the B3Π state and the polarization in the unpaired 9σ and 4π orbitals.  相似文献   

9.
Tungsten bronze (TB)-type oxide ceramic Pb0.74K0.13Y0.13Nb2O6 (PKYN) has been synthesized by the standard solid state reaction method. Single phase formation, orthorhombic crystal structure was confirmed by X-ray diffraction (XRD). The substitution of Y3+ in Pb0.74K0.52Nb2O6 (PKN) decreased the unit cell volume and TC=260 °C. PKYN exhibited the remnant polarization, Pr=8.5 μC/cm2, and coercive field, Ec=28.71 kV/cm. Electrical spectroscopy studies were carried out over the temperature (35-595 °C) and frequency (45 Hz-5 MHz) ranges, and the charge carrier phenomenon, grain-grain boundary contribution and non-Debye-type relaxation were analyzed. The relaxation species are immobile charges in low temperature and oxygen vacancies at higher temperature. The theoretical values computed using the relations, ε′=ε+sin(n(T)π/2)(a(T)/ε0)(ωn(T)−1); σ(ω)=σdc+Aωn are fitted with the experimental one. The n and A parameters suggested that the charge carrier's couple with the soft mode and become mobile at TC. The activation enthalpy, Hm=0.38 eV, has been estimated from the hopping frequency relation ωp=ωe exp(−Hm/kBT). The piezoelectric constants Kt=35.4%, d33=69×10−12 C/N, d31=−32×10−3 mV/N, S11E=17.8 pm2/N, etc., achieved in PKYN indicate the material is interesting for transducer applications. The activation energies from different formalisms confirmed the ionic-type conduction.  相似文献   

10.
The g factors g and g for the tetragonally-compressed (CrO4)3− clusters in YMO4 (M=V, P) crystals are calculated from the high-order perturbation formulas based on the two-mechanism model for the compressed d1 tetrahedra with the ground state |dz2〉. From the calculated values and by considering a small admixture of the first excited state |dx2y2〉 to the ground state |dz2〉 due to the vibrational motion of ligands (which leads a twinkling compressed tetrahedron to become an elongated one), the observed g and g for Cr5+ centers in YMO4 crystals are explained reasonably. The difficulty of the large deviations of g from ge (≈2.0023) in the two systems is therefore removed and the above dynamic effect may be the cause which results in the large deviation of g from ge for some (CrO4)3− clusters in crystals.  相似文献   

11.
Electron spin resonance (ESR) of Cu2+ doped cadmium formate dihydrate single crystal was studied at room temperature. Copper enters the lattice substitutionally and is trapped at two magnetically inequivalent sites. The observed spectra are fitted to a spin-Hamiltonian of rhombic symmetry with the following values of the spin-Hamiltonian parameters, Cu2+(I): gx=2.097±0.002, gy=2.1166±0.002, gz=2.2887±0.002 and Ax=(140±2)×10−4 cm−1, Ay=(151±2)×10−4 cm−1, Az=(239±2)×10−4 cm−1, Cu2+(II): gx=2.0843±0.002, gy=2.1045±0.002, gz=2.2742±0.002 and Ax=(141±2)×10−4 cm−1, Ay=(158±2)×10−4 cm−1, Az=(267±2)×10−4 cm−1. The ground state wave function of the Cu2+ ion in this lattice is evaluated. It is found that the ground state is predominantly |x2y2〉. The g-factor anisotropy is also calculated and compared with the experimental value. With the help of the optical absorption study, the nature of bonding in the complex has been discussed.  相似文献   

12.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

13.
The large-amplitude bending motion in CsOH, a ‘classical’ molecule whose microwave spectrum was first recorded in 1967, has been studied ab initio. The three-dimensional potential energy surface has been calculated at the RCCSD(T)_DK3/[QZP + g ANO-RCC (Cs, O, H)] level of theory and employed in MORBID calculations of the rotation-vibration energies and intensities. The ground electronic state is 1Σ+ with the equilibrium structure re(Cs-O) = 2.3930 Å, re(O-H) = 0.9587 Å, and ∠e(Cs-O-H) = 180.0°. The O-H moiety is bound to Cs by an ionic bond and the molecule can be described as Csδ+(OH)δ-. Hence, the bending potential is shallow and gives rise to large-amplitude bending motion. The ro-vibrationally averaged structural parameters, determined as expectation values over MORBID wavefunctions, are 〈r(Cs-O)〉0 = 2.3987 Å, 〈r(O-H)〉0 = 0.9754 Å, and 〈∠(Cs-O-H)〉0 = 163°. Although the averaged structure in the vibrational ground state is far from being linear, the Yamada-Winnewissi-linearity parameter for CsOH is γ0≈-1.0, the value characteristic for a linear molecule.  相似文献   

14.
The Electron spin resonance (ESR) study of Cu2+-doped Bis(l-asparaginato)zinc(II) has been done at room temperature. Two magnetically equivalent sites for Cu2+ have been observed. The spin-Hamiltonian parameters evaluated with the fitting of spectra to rhombic symmetry crystalline field are gx=2.0341±0.0002, gy=2.0649±0.0002, gz=2.2390±0.0002, Ax=(51±2)×10−4 cm−1, Ay=(75±2)×10−4 cm−1and Az=(169±2)×10−4 cm−1. The ground state wave function of Cu2+ has also been determined. The g-anisotropy has been estimated and compared with the experimental value. Further with the help of optical study, the nature of bonding of metal ion with different ligands in the complex has been discussed.  相似文献   

15.
Resonance-enhanced multiphoton ionization (REMPI) has been applied to study the n → 3p Rydberg transition of pyrimidine (jet-cooled sample and mass resolved spectrum). Only the one component, the 3pz(B2), appears in the (2 + 1) REMPI and the active vibrations are ν6a = 622, ν1 = 946, and ν9a = 1116 cm−1. The symmetry of the state was determined by polarization measurements (linear, circular polarization). The first (π,n) 3B1 triplet state appears as a one-photon resonance in the three-photon ionization process.  相似文献   

16.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

17.
The base alloys of nominal composition (Nd0.75Pr0.25)yFebalanceBx (y=10−9.2 and x=6−19.2) were chosen to study the influence of RE/B ratio, smaller than stochiometric composition on magnetic properties of over quenched and annealed ribbons. From X-ray diffraction analysis of these ribbons, the α-Fe and Fe3B phases were observed along with (Nd,Pr)2Fe14B major phase. The average grain size was calculated using these patterns as: 35 nm for α-Fe, 45 nm for (Nd,Pr)2Fe14B and 22 nm for Fe3B particles. TEM analysis also supported the nano distribution of the above phases. These X-ray graphs support the idea of exchange coupling between hard and soft phases responsible for the observed magnetic properties. In these ribbons the saturation magnetization Js and remnant magnetization Jr increases from 1.19 T to 1.66 T and from 0.65 T to 0.91 T, respectively as RE/B ratio increases. The increase in Js and Jr may be attributed to the presence of exchange coupling between these phases. The corresponding coercivity jHc decreases from 673.33 to 271.33 k Am−1. The maximum energy product (BH)max initially increases from 72.42 kJ m−3to 109.85 kJ m−3 up to RE/B≈1 and then decreases to 58.5 kJ m−3, depending on the shape of second quadrant BH loop. The coercivity mechanism observed from initial hysteresis curve was considered to be nucleation of domain wall.  相似文献   

18.
The millimeterwave spectra of F210BOH and F211BOH (difluorohydroxyborane) have been measured in their ground vibrational state. Accurate rotational and centrifugal distortion constants have been determined. The equilibrium geometry and anharmonic force fields have been calculated at the CCSD(T) level of theory. The ab initio centrifugal distortion constants and rotation-vibration interaction constants are compared to the experimental values. Some discrepancies are found and discussed. Particularly, it is explained why the semi-experimental structure is not reliable. The best equilibrium structure is: re(BFcis) = 132.29 pm, re(BFtrans) = 131.29 pm, re(BO) = 134.48 pm, re(OH) = 95.74 pm, ∠e(FBF) = 118.36°, ∠e(FcisBO) = 122.25°, and ∠e(BOH) = 113.14°.  相似文献   

19.
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm−1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant (ωe) for MnH was found to be 1546.84518(65) cm−1, the equilibrium rotational constant (Be) is 5.6856789(103) cm−1 and the eqilibrium bond distance (re) was determined to be 1.7308601(47) Å.  相似文献   

20.
A large solid angle detector has been used to observe two body events produced by electron-positron collisions in the Orsay storage ring. From the π+π excitation curve in the ? region we have deduced the amplitude and the phase of the ω-? interference, and the ? resonance paramaters: M? = (775.4±7.3) MeV, Γ? = (149.6 ± 23.2) MeV, √B(ωπ+π) = 0.19 ± 0.05, φ = (85.7 ± 15.3)0, σ(e+e?) = (1.00 ± 0.13) μb at S = M?2, B(?e+e = (4.1 ± 0.5) × 10−5, Γ(?e+e) = (6.1 ± 0.7) keV, (g?2/4π) = 2.26 ± 0.25, (g?ππ2/4π) = 2.84 ± 0.50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号