首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

2.
The vibrational spectra of Eu[Co(CN)6]·4H2O and luminescence spectra of Eu3+ in this compound, using 355 nm excitation at temperatures down to 10 K, have been assigned. A clear distinction is made between the n=5 and 4 members of the Ln[M(CN)6nH2O series from the vibrational spectra. The electronic spectra show prominent vibronic structures, particularly for the 5D07F2 sideband. A resonance occurs between the transitions 5D07F1(III) and 5D07F0+ν(Eu−N). A crystal field analysis of the derived energy data set is presented for Eu3+ in eight coordination geometry.  相似文献   

3.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

4.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

5.
Transport properties and non-stoichiometry of La1−xCaxW1/6O2 and La1−yW1/6O2 (x=0, 0.005, 0.05; y=0.05, 0.1) have been characterized by means of impedance spectroscopy, the EMF-technique, H+/D+ isotope exchange, and thermogravimetry in the temperature range 300-1200 °C as a function of oxygen partial pressure and water vapor partial pressure. The materials exhibit mixed ionic and electronic conductivities; n- and p-type electronic conduction predominate at high temperatures under reducing and oxidizing conditions, respectively. Protons are the major ionic charge carrier under wet conditions and predominates the conductivity below ∼750 °C. The maximum in proton conductivity is observed for LaW1/6O2 with values reaching 3×10−3 S/cm at approximately 800 °C. The high proton conductivity for the undoped material is explained by assuming interaction between water vapor and intrinsic (anti-Frenkel) oxygen vacancies.  相似文献   

6.
The transport properties of Sr0.98La0.02SnO3−δ in the system Sr1−xLaxSnO3−δ, after which the pyrochlore La2Sn2O7 appears, were investigated over the temperature range 4.2-300 K. The oxide was found to be n-type semiconductor with concomitant reduction of Sn4+ into Sn2+. The magnetic susceptibility was measured down to 4.2 K and is less than 3×10−5 emu cgs mol−1 consistent with itinerant electron behavior. The electron is believed to travel in a narrow band of Sn:5s character with an effective mass ∼4 mo. The highest band gap is 4.32 eV and the optical transition is directly allowed. A further indirect transition occurs at 4.04 eV. The electrical conductivity follows an Arrhenius-type law with a thermal activation of 40 meV and occurs by small polaron hopping between nominal states Sn4+/2+. The linear increase of thermo-power with temperature yields an electron mobility μ300 K (2×10−4 cm2 V−1 s−1) thermally activated. The insulating-metal transition seems to be of Anderson type resulting from random positions of lanthanum sites and oxygen vacancies. At low temperatures, the conduction mechanism changes to a variable range hopping with a linear plot Ln ρ−1 vs. T−4. The photo electrochemical (PEC) measurements confirm the n-type conductivity and give an onset potential of −0.46 VSCE in KOH (1 M). The Mott-Schottky plot C−2-V shows a linear behavior from which the flat band potential Vfb=+0.01 VSCE at pH 7 and the doping density ND=1.04×1021 cm−3 were determined.  相似文献   

7.
High-quality LaCuO2, elaborated by solid-state reaction in sealed tube, crystallizes in the delafossite structure. The thermal analysis under reducing atmosphere (H2/N2: 1/9) revealed a stoichiometric composition LaCuO2.00. The oxide is a direct band-gap semiconductor with a forbidden band of 2.77 eV. The magnetic susceptibility follows a Curie-Weiss law from which a Cu2+ concentration of 1% has been determined. The oxygen insertion in the layered crystal lattice induces p-type conductivity. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Cu+/2+ with an activation energy of 0.28 eV and a hole mobility (μ300 K=3.5×10−7 cm2 V−1 s−1), thermally activated. Most holes are trapped in surface-polaron states upon gap excitation. The photoelectrochemical study, reported for the first time, confirms the p-type conduction. The flat band potential (Vfb=0.15 VSCE) and the hole density (NA=5.8×1017 cm−3) were determined, respectively, by extrapolating the curve C−2 versus the potential to their intersection with C−2=0 and from the slope of the linear part in the Mott-Schottky plot. The valence band is made up of Cu-3d orbital, positioned at 4.9 eV below vacuum. An energy band diagram has been established predicting the possibility of the oxide to be used as hydrogen photocathode.  相似文献   

8.
We have performed an ab initio study of structural, electronic, magnetic, vibrational and thermal properties of the cubic spinel LiMn2O4 by employing the density functional theory, the linear-response formalism, and the plane-wave pseudopotential method. An analysis of the electronic structure with the help of electronic density of states shows that the density of states at the Fermi level (N (EF)) is found to be governed by the Mn 3d electrons with some contributions from the 2p states of O atoms. It is important to note that the contribution of Mn 3d states to N(EF)N(EF) is as much as 85%. From our phonon calculations, we have obtained that the main contribution to phonon density of states (below 250 cm−1) comes from the coupled motion of Mn and O atoms while phonon modes between 250 cm−1 and 375 cm−1 are characterized by the vibrations of all the three types of atoms. The contribution from Li increases rapidly at higher frequency (above 375 cm−1) due to the light mass of this atom. Finally, the specific heat and the Debye temperature at 300 K are calculated to be 249.29 J/mol K and 820.80 K respectively.  相似文献   

9.
Cu(im)6 complexes in Zn(im)6Cl2·4H2O exhibit a strong Jahn-Teller effect which is static below 100 K and the complex in localized in the two low-energy potential wells. We have reinvestigated electron paramagnetic resonance (EPR) spectra in the temperature range 4.2-300 K and determined the deformation directions produced by the Jahn-Teller effect, energy difference 11 cm−1 between the wells and energy 300 cm−1 of the third potential well. The electron spin relaxation was measured by electron spin echo (ESE) method in the temperature range of 4.2-45 K for single crystal and powder samples. The spin-lattice relaxation is dominated by a local mode of vibration with energy 11 cm−1 at low temperatures. We suppose that this mode is due to reorientations (jumps) of the Cu(im)6 complex between the two lowest energy potential wells. At intermediate temperatures (15-35 K), the T1 relaxation is determined by the two-phonon Raman processes in acoustic phonon spectrum with Debye temperature ΘD=167 K, whereas at higher temperatures the relaxation is governed by the optical phonon of energy 266 cm−1. The ESE dephasing is produced by an instantaneous diffusion below 15 K with the temperature-independent phase memory time , then it grows exponentially with temperature with an activation energy of 97 cm−1. This is the energy of the first excited vibronic level. The thermal population of this level leads to a transition from anisotropic to isotropic EPR spectrum observed around 90 K. FT-ESE gives ESEEM spectrum dominated by quadrupole peaks from non-coordinating 14N atom of the imidazole rings and the peak from double quantum transition νdq. We show that the amplitude of the νdq transition can be used to determine the number of non-coordinating nitrogen atoms.  相似文献   

10.
Structural, magnetic, heat capacity, electrical and thermal transport properties are reported on polycrystalline Ba8Ni6Ge40. Ba8Ni6Ge40 crystallizes in a cubic type I clathrate structure with unit cell a=10.5179 (4) Å. It is diamagnetic with susceptibility χdia=−1.71×10-6 emu/g Oe. An Einstein temperature 75 K and a Debye temperature 307 K are estimated from heat capacity data. It exhibits n-type conducting behavior below 300 K. It shows high Seebeck coefficients (−111×10-6 V/K), low thermal conductivity (2.25 W/K m), and low electrical resistivity (8.8 mΩ cm) at 300 K.  相似文献   

11.
Density functional theory has been employed to investigate the adsorption and the dissociation of an N2O at different sites on perfect and defective Cu2O(1 1 1) surfaces. The calculations are performed on periodic systems using slab model. The Lewis acid site, CuCUS, and Lewis base site, OSUF are considered for adsorption. Adsorption energies and the energies of the dissociation reaction N2O → N2 + O(s) at different sites are calculated. The calculations show that adsorption of N2O is more favorable on CuCUS adsorption site energetically. CuCUS site exhibits a very high activity. The CuCUS-N2O reaction is exothermic with a reaction energy of 77.45 kJ mol−1 and an activation energy of 88.82 kJ mol−1, whereas the OSUF-N2O reaction is endothermic with a reaction energy of 205.21 kJ mol−1 and an activation energy of 256.19 kJ mol−1. The calculations for defective surface indicate that O vacancy cannot obviously improve the catalytic activity of Cu2O.  相似文献   

12.
The electrical transport coefficients of anti-ferromagnetic CaMnO3 have been investigated by density functional theory calculation within generalized gradient approximation. The calculated transport coefficients exhibit the anisotropic nature, in agreement with its electronic states. The transport property results reveal the stronger carrier transport along the O1–Mn–O1 plane within the O–Mn–O octahedron, indicating that the Mnd and O1p orbitals are mainly responsible for electrical transport. The maximum power factor values as a function of relaxation time reach 8.4×1023 Wm−1 K−2 s−1, 7.9×1023Wm−1 K−2 s−1 and 4.9×1023 Wm−1 K−2 s−1 within c, a and b direction, respectively. The dimensionless figure of merit ZTxx, ZTyy as well as ZTzz is estimated with 1.28, 0.8 and 1.37 at 1000 K, respectively.  相似文献   

13.
The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H2SO4. The surface area of chemically modified activated carbon was 741.2 m2 g−1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g−1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol−1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.  相似文献   

14.
The single crystal of [Ni(ina)2(H2O)4]·(sac)2, (NINS), (ina is isonicotinamide and sac is saccharinate) complex has been prepared and its structural, spectroscopic and thermal properties have been determined. The title complex crystallizes in monoclinic system with space group P21/c, Z=2. The octahedral Ni(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate ina ligands through the ring nitrogen and four aqua ligands to form discrete [Ni(ina)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bands. The magnetic environment of copper(II) doped NINS crystal has also been identified by electron paramagnetic resonance (EPR) technique. The g and A values of Cu2+ doped NINS single crystal were calculated from the EPR spectra recorded in three mutually perpendicular planes. These values indicated that the paramagnetic centre has a rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The complex exhibits only metal centred electroactivity in the potential range of −2.00, 1.25 V versus Ag/AgCl reference electrode.  相似文献   

15.
Glasses with composition xBi2O3·(30−x)M2O·70B2O3 (M=Li, Na) containing 2 mol% V2O5 have been prepared over the range 0≤x≤15 (x is in mol%). The electron paramagnetic resonance spectra of VO2+ of these glasses have been recorded in the X-band (≈9.3 GHz) at room temperature (RT≈300 K). Spin Hamiltonian parameters, g, g, A, A, dipolar hyperfine coupling parameter, P, and Fermi contact interaction parameter, K, have been calculated. The molecular orbital coefficients, α2 and γ2, have been calculated by recording the optical transmission spectra. In xBi2O3·(30−x)Li2O·70B2O3 glasses there is decrease in the tetragonality of the V4+O6 complex for x up to 6 mol% whereas for x≥6 mol%, tetragonality increases. In xBi2O3·(30−x)Na2O·70B2O3 glasses there is increase in the tetragonality of the V4+O6 complex with increasing x. The 3dxy orbit expands with increase in Bi2O3:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported. The DC conductivity increases with increase in temperature. The order of conductivity is 10−5 ohm−1 m−1 at low temperature and 10−3 ohm−1 m−1 at high temperature. The DC conductivity decreases and the activation energy increases with increase in Bi2O3:M2O ratio.  相似文献   

16.
Using the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (bptd), we recently prepared [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2 (H2O)4] Cl4, 3H2O in which the magnetic centres are connected through one diazine+one chloro and two diazine ligand bridges, respectively. These two compounds are the first examples that show null intramolecular magnetic interactions despite M-M distances close to 3.7 Å within perfectly planar edifices:Down to , [Cu2(bptd)Cl4(H2O)] is paramagnetic while, below Tt, half of the Cu2+ions interact, leading to residual paramagnetism of one Cu2+/f.u. Magnetic susceptibility measurements, EPR and pulsed EPR study indicate the original intermolecular nature of AF exchanges.[Ni2(bptd)2(H2O)4]Cl4·3H2O susceptibility obeys a Curie-law involving pure paramagnetism. Moreover, its EPR spectrum can be interpreted on the basis of virtual S=1 monomers. Below 70 K, Zero Field Splitting (D∼275 G) due to dipolar interactions without magnetic exchanges could be responsible for the LT spectra splitting. For both compounds, the thia role is suggested as partially responsible for the null-in-plane magnetic exchanges.  相似文献   

17.
Heat-capacity investigations on the ferrimagnetic spinel FeCr2S4 poly- and single crystals provide experimental evidence of orbital liquid and orbital glass states. The low-temperature transition in the polycrystals at 10 K arises from orbital order and is very sensitive to the sample stoichiometry. In the single crystals the orbital order is fully suppressed resulting in an orbital glass state with the heat capacity following a strict T2 dependence towards zero temperature. At elevated temperatures, FeCr2S4 exhibits an unexpected large linear term of about 100 mJ mol−1 K−2 as the fingerprint of the orbital liquid.  相似文献   

18.
Ion beam sputtering process was used to deposit n-type fine-grained Bi2Te3 thin films on BK7 glass substrates at room temperature. In order to enhance the thermoelectric properties, thin films are annealed at the temperatures ranging from 100 to 400 °C. X-ray diffraction (XRD) shows that the films have preferred orientations in the c-axis direction. It is confirmed that grain growth and crystallization along the c-axis are enhanced as the annealing temperature increased. However, broad impurity peaks related to some oxygen traces increase when the annealing temperature reached 400 °C. Thermoelectric properties of Bi2Te3 thin films were investigated at room temperature. The Bi2Te3 thin films, including as-deposited, exhibit the Seebeck coefficients of −90 to −168 μV K−1 and the electrical conductivities of 3.92×102-7.20×102 S cm−1 after annealing. The Bi2Te3 film with a maximum power factor of 1.10×10−3 Wm−1 K−2 is achieved when annealed at 300 °C. As a result, both structural and transport properties have been found to be strongly affected by annealing treatment. It was considered that the annealing conditions reduce the number of potential scattering sites at grain boundaries and defects, thus improving the thermoelectric properties.  相似文献   

19.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

20.
In a three-components fluorophosphate glass system, the introduction of H3BO3 brings some valuable influence to the spectroscopic and thermal properties of the glasses. With H3BO3 increases from 2 to 20 mol%, Ω6, Sed4I13/2, FWHM, Tg and fluorescence lifetime change from 3.21×10−20 cm2, 1.77×10−20 cm2, 45 nm, 480 °C and 8.8 ms to 4.66×10−20 cm2, 2.11×10−20 cm2, 50 nm, 541 °C and 7.4 ms, respectively. σabs, σemi, FWHM×τf×σemi has a maximum when H3BO3 is 11 mol%. Tg and TxTg increases with H3BO3 introduction. Results showed that in fluorophosphate glasses, proper amount of B2O3 can be used as a modifier to suppress upconversion and improve spectroscopic properties, broadband property and crystallization stability of the glasses while keeps the fluorescence lifetime relatively high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号