首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermolecular charge-transfer (CT) complexes formed between two poly(amidoamine) dendrimers (PAMAM) from zero (D1) and second generation (D2) as donor and iodine as sigma-acceptor have been studied spectrophotometrically in the chloroform medium. The suggested structures of the solid iodine charge-transfer complexes investigated by several techniques using elemental analysis, mid infrared spectra, and thermal analysis (TGA and DTG) of the solid CT-complexes along with the photometric titration curves for the reactions. The results indicate the formation of two CT-complexes [(D1)]-I(2) and [(D2)]-2I(2) with acceptor:donor molar ratios of 1:1 and 1:2, respectively. The kinetic parameters (non-isothermal method) for their decomposition have been evaluated by graphical methods using the equations of Horowitz-Metzger (HM) and Coats-Redfern (CR).  相似文献   

2.
在MP2水平下对被定义为"电荷转移复合物(CTC)"的苯(C6H6)-卤素分子X2(X=F, Cl, Br, I)相互作用体系进行了量子化学研究. 在优化所得C6H6-X2(X=F, Cl, Br, I)复合物的平衡几何结构中, 卤素分子X2接近垂直指向苯环上碳-碳双键的中心. 自然键轨道(NBO)分析结果表明, 苯-卤素体系中电荷转移的数量很少. 对称性匹配微扰理论(Symmetry-adapted perturbation theory, SAPT) 能量分解结果显示, 在4个复合物体系中, 静电作用的贡献相对较小(只占总吸引作用的20%左右), 对于C6H6-F2体系, 色散作用是其主要吸引作用, 对于C6H6-Cl2, C6H6-Br2和C6H6-I2 体系, 诱导作用则是其主要的吸引作用, 从F到I, 色散作用逐渐减弱, 诱导作用逐渐增强, 表明在电子相关水平上将苯-卤素体系称为"电荷转移复合物"的说法并不确切.  相似文献   

3.
The solid charge-transfer complexes formed in the reaction of the electron donor 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the acceptors iodine, tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) have been isolated. These were characterized through electronic and infrared spectra as well as thermal and elemental analysis. The results show that the formed solid CT-complexes have the formulas [(TMTACN)I]I3, [(TMTACN)(TCNE)5] and [(TMTACN)(TCNQ)3] in full agreement with the known reaction stoichiometries in solution. The chloranil CT-solid complex cannot be isolated in pure form.  相似文献   

4.
The interaction of the interesting polynitrogen cyclic base 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the sigma-acceptor iodine and pi-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-p-benzoquinone (chloranil) have been studied spectrophotometrically and cyclic voltametrically in chloroform at 20 degrees C. Based on the obtained data, the formed charge-transfer complexes were formulated as [(TMTACN)I](+).I(3)(-), [(TMTACN)(TCNE)(5)], [(TMTACN)(TCNQ)(3)] and [(TMTACN)(chloranil)(3)] where the stoichiometry of the reactions, donor:acceptor molar ratios, were shown to equal 1:2 for iodine complex, 1:3 for chloranil and TCNQ complexes and 1:5 for TCNE complex.  相似文献   

5.
The crystal structure of the nonlinear optical material, iodoform octasulfur (CHI3.(S8)3), in the polar space group R3m, has been shown to contain three unique S...I and several S...S close contacts (相似文献   

6.
The interactions of iodine with each of the electron donors 1-aza-15-crown-5 (AC) and 3,6,9,14-tetrathiabicyclo[9.2.1]tetradeca-11,13-diene (TTBCTD) in CHCl3 have been described in terms of 1:1 and 1:2, base: I2 complexes, respectively, forming the complexes of the type [(AC)2I]+.I3- and [(TTBCTD)(I2)2]. The [(AC)2I]+.I3- shows the characteristic absorptions of I3- ion at 265 and 365 nm while the charge-transfer transition of [(TTBCTD)(I2)2] occurs at 320 nm. The formation of the two complexes was further confirmed by far infrared measurements. The values of the complex formation constant, K, and the absorpativity, in CHCl3 are calculated for the complex [(AC)2I]+.I3-.  相似文献   

7.
Reaction of N-methylbenzothiazole-2-thione (C8H7NS2 or NMBZT) with diiodine produced the charge-transfer (ct) complex [(NMBZT).I2] (1). NMBZT reacts with diiodine in the presence of FeCl3 in a molar ratio of 3:6:1 and forms the ionic complex [[(NMBZT)2I+].[FeCl4]-] (2) together with [[(NMBZT)2I+].[I7]-] (2a) iodonium salt. The reaction of benzimidazole-2-thione (C7H6N2S or MBZIM) with diiodine on the other hand results in the formation of the ct [[(MBZIM)2I]+[I3]-].[(MBZIM).I2] (3) compound. The compounds have been characterized by elemental analyses, DTA-TG, FT-Raman, FT-IR, UV-vis, and 1H NMR spectroscopies, and X-ray crystal structure determinations. Compound 1, C8H7I2NS2, is orthorhombic with a space group Pna2(1) and a = 12.5147(13) angstroms, b = 22.536(3) angstroms, c = 4.2994(5) angstroms, and Z = 4. Compound 2, C16H14Cl4FeIN2S4, is monoclinic, space group C2/c, a = 35.781(2) angstroms, b = 7.4761(5) angstroms, c = 18.4677(12) angstroms, beta = 107.219(1) degrees, and Z = 8. Compound 3, C21H18I6N6S3, monoclinic, space group P2(1)/n, a = 14.0652(11) angstroms, b = 22.536(3) angstroms, c = 4.2994(5) angstroms, beta = 99.635(7) degrees, and Z = 4, consists of two component moieties cocrystallized, one neutral which contains the benzimidazole-2-thione (MBIZM) ligand bonded with an iodine atom through sulfur, forming a compound with a "spoke" structure [(MBZIM)I2] 3a, while the other is the ionic complex [[(MBZII)2I+].[I3]-] (3b). The X-ray crystal structure of 1 shows a bond between the thione-sulfur atom and one of the iodine atoms in an essentially planar arrangement. In the cation of 2, an iodine is coordinated by two thione-sulfur atoms in a linear arrangement but the molecule is not planar. For the first time in the solid state a spoke-ionic mixed complex has been characterized in 3. One component of the structure is a molecular diiodine adduct, i.e., [(MBZIM)I2] (3a), with a linear coordination geometry in a decidedly planar arrangement, and the other component is an ionic adduct [[(MBZIM)2I]+.[I3]-] (3b) with the cation having an arrangement similar to that found for 1. Theoretical calculations using density functional (DFT) and ab initio Hartree-Fock theory have been carried out for 1 and 3a,b. The results are consistent with the experimental data. Conclusions on the behavior of a thioamide, when used as an antithyroid drug, have also been made.  相似文献   

8.
A series of 3,3'-polymethylene-2,2'-bi-1,10-phenanthrolines coordinate with Cu(I) to form dinuclear complexes [(CuL)(2)](2+). As the 3,3'-bridge is lengthened from two to four carbons, the ligand becomes more twisted about the 2,2'-bond, favoring dinuclear coordination. The distance between the two copper atoms varies from 2.92 A for the dimethylene-bridged system to 3.59 A for the tetramethylene bridge. Favorable pi-stacking interactions occur between opposing ligands and promote complex formation. Competition experiments indicate that self-recognition is important and only homoleptic complexes are observed. Under equilibrium conditions, formation of the tetramethylene-bridged complex appears to be the most favored while the dimethylene-bridged system is least favored. The intensity of the long wavelength metal-ligand charge-transfer absorption band decreases as the 3,3'-bridge is shortened. Interaction between the two copper centers is evidenced by a splitting of the oxidation wave, and this splitting increases as the Cu-Cu distance is decreased.  相似文献   

9.
Interaction of 2-aminomethyl-15-crown-5 (AM15C5) with iodine has been investigated spectrophotometrically in chloroform and 1,2-dichloroethane (1,2-DCE) solutions. The observed time dependence of the charge-transfer band and subsequent formation of I(3)(-) in solution were related to the slow transformation of the initially formed 1:1 AM15C5.I(2) outer complex to an inner electron donor-acceptor (EDA) complex, followed by fast reaction of the inner complex with iodine to form a triiodide ion. The pseudo-first-order rate constants were evaluated from the absorbance- and conductivity-time data. The stoichiometry and formation constants of the resulting EDA complexes have also been determined. Thermodynamic parameters, Delta H degrees and Delta S degrees , of the complexes have been determined from the temperature dependence of stability constants by Van't Hoff equation. The results indicate that iodine complexes of AM15C5 in both solvents are enthalpy stabilized but entropy destabilized. The influence of solvent properties on the kinetics and stability of the resulting charge-transfer complexes are discussed.  相似文献   

10.
The Au(I) and Ag(I) closed-shell metal dimers of 2-(diphenylphosphino)-1-methylimidazole, dpim, were investigated. dpim formed the discreet binuclear species [Ag2(dpim)2(CH3CN)2](2+) (1) when reacted with appropriate Ag(I) salts. Likewise, [Au2(dpim)2](2+) (3) and [AuAg(dpim)3](2+) (4) were produced via reactions with (tht)AuCl, tht is tetrahydrothiophene, and Ag(I). Compound 3 exhibits an intense blue luminescence (lambdamax=483 nm) in the solid state. However, upon initial formation of 3, a small impurity of Cl- was present giving rise to an orange emission (lambdamax=548 nm). Attempts to form [Au2(dpim)2]Cl2 yielded only (dpim)AuCl (2), which is not visibly emissive. The rare three-coordinate heterobimetallic complex [AuAg(dpim)3](2+) (4) exhibits intense luminescence in the solid-state resembling that of 3. The crystal structures of 1-4 were determined, revealing strong intramolecular aurophilic and argentophilic interactions in the dimeric compounds. Compound 1 has an Ag(I)-Ag(I) separation of 2.9932(9) A, while compound 3 has a Au(I)-Au(I) separation of 2.8174(10) A. Compound 4 represents the first example of a three-coordinate Au(I)-Ag(I) dimer and has a metal-metal separation of 2.8635(15) A. The linear Au(I) monomer, 2, has no intermolecular Au(I)-Au(I) interactions, with the closest separation greater than 6.8 A.  相似文献   

11.
Liu CS  Chen PQ  Yang EC  Tian JL  Bu XH  Li ZM  Sun HW  Lin Z 《Inorganic chemistry》2006,45(15):5812-5821
In our efforts to investigate the coordination architectures of transition metals and organic ligands with tailored structures, we have prepared two structurally related rigid bulky acridine-based ligands, 9-[3-(2-pyridyl)pyrazol-1-yl]- acridine (L(1)) and 9-(1-imidazolyl)acridine (L2), and synthesized and characterized four of their Ag(I) complexes, {[AgL1](ClO4)}2 (1), {[AgL1](NO3)}2 (2), [AgL2(2)](ClO4) (3), and {[(Ag3L2(3))(NO3)](NO3)2(H2O)}(infinity) (4). The single-crystal X-ray diffraction analysis shows that the structures of 1 and 2 are similar to each other, with the two intramolecular Ag(I) centers of each complex being encircled by two L1 ligands; this forms a unique boxlike cyclic dimer, which is further linked to form one-dimensional (1D) chains of 1 and a two-dimensional (2D) network of 2 by intermolecular face-to-face pi...pi stacking and/or weak C-H...O hydrogen-bonding interactions, respectively. 3 has a mononuclear structure, which is further assembled into a 2D network via intermolecular Ag...O and pi...pi stacking weak interactions. 4 possesses two different 1D motifs that are further interlinked through interlayer face-to-face pi...pi stacking and Ag...O weak interactions, resulting in a 2D network. It is worth noting that one of the interesting structural features of 1, 2, and 4 is the presence of obvious C-H...M hydrogen-bonding interactions between the Ag centers and some acridine ring H atoms identified by X-ray diffraction on the basis of the van der Waals radii. Furthermore, as a representative example, full geometry optimization on the basis of the experimental structure, the natural bond orbital (NBO), and topological analysis of 1 were carried out by DFT and AIM (Atoms in Molecules) calculations. The total C-H...Ag interaction energy in 1 is estimated to be about 14 kJ/mol. Therefore, this work offers three new rare examples (1, 2, and 4) that exhibit C-H...Ag weak interactions, in which the N donors of the acridine rings coordinate to Ag(I) ions. Also, these results strongly support the existence of C-H...Ag close interactions and allow us to have a better understanding of the nature of such interactions in the coordination supramolecular systems.  相似文献   

12.
Electron donor–acceptor interaction of morpholine (morp) with chloranilic acid (cla) and picric acid (pa) as π-acceptors was investigated spectrophotometrically and found to form stable charge-transfer (CT) complexes (n–π*) of [(Hmorp)2(cla)] and [(Hmorp)(pa)]2. The donor site involved in CT interaction is morpholine nitrogen. These complexes are easily synthesized from the reaction of morp with cla and pa within MeOH and CHCl3 solvents, respectively. 1HNMR, IR, elemental analyses, and UV–vis techniques characterize the two morpholinium charge-transfer complexes. Benesi–Hildebrand and its modification methods were applied to the determination of association constant (K), molar extinction coefficient (?). The X-ray crystal structure was carried out for the interpretation the predict structure of the [(Hmorp)(pa)]2 complex.  相似文献   

13.
The reactions of the electron donor 1-methylpiperidine (1MP) with the π-acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil = CHL) and iodine (I2) were studied spectrophotometrically in chloroform at room temperature. The electronic and infrared spectra of the formed molecular charge-transfer (CT) complexes were recorded. The obtained results showed that the stoichiometries of the reactions are not fixed and depend on the nature of the acceptor. Based on the obtained data, the formed charge-transfer complexes were formulated as [(1MP)(TCNE)2], [(1MP)(DDQ)]·H2O, [(1MP)(CHL)] and [(1MP)I]I3, while in the case of 1MP–TCNQ reaction, a short-lived CT complex is formed followed by rapid N-substitution by TCNQ forming the final reaction products 7,7,8-tricyano-8-piperidinylquinodimethane (TCPQDM). The five solids products were isolated and have been characterized by electronic spectra, infrared spectra, elemental analysis and thermal analysis.  相似文献   

14.
The reaction of 2-pyrimidone hydrochloride ([C(4)H(5)N(2)O](+)[Cl](-) or [PMOH(2)](+)[Cl](-)) with diiodine in a dichloromethane-methanol solution resulted in the formation of ([C(4)H(5)N(2)O](+))(2)[I(2)Cl(2)](2-) (1) complex. The compound was characterized by elemental analysis, FT-IR, DTA-TG and conductivity titrations. The crystal structure of 1 was also determined by X-ray diffraction at 294(1) K. Compound 1 is monoclinic, space group P2(1)/n, consisting of two cationic [PMOH(2)](+) species and a [I(2)Cl(2)](2-) counter dianion. The cation is in its keto form. Direct reaction of thiazolidine-2-thione (tzdtH), with diiodine in dichloromethane solution, on the other hand, led to the formation of a crystalline solid which contained two complexes of formulae [(tzdtH)(2)I](+)[I(3)](-).2I(2) (2) and [(tzdtH)I(2)](2).I(2) (2a) in a ratio of 90 to 10%. Complex 2a was characterized by X-ray analysis at 180(2) K. Compound is monoclinic, space group C2/c and contains two units of [(tzdtH)I(2)] "spoke" structures. Compound 1, as well as the known species iodonium salt [(tzdtH)(2)I](+)[I(3)](-).2I(2) (2) and the charge transfer (CT) iodine complexes of formulae [(bztzdtH)I(2)] (3) and [(bztzdtH)I(2)].I(2) (4) (bztzdtH = 2-mercaptobenzothiazole) with "spoke" and extended "spoke" structures respectively, were tested for their oxidizing activity towards 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone.  相似文献   

15.
The photophysical properties of two N,N'-bis-alkyl-1,4,6,8-naphthalenediimide (DCN1 and DCN2) have been studied in chloroform and N,N-dimethylformamide solvents. The ability of DCN2 in N,N-dimethylformamide to detect metal cations have been monitored by the fluorescence emission spectroscopy. It has been shown that the fluorescent intensity is very sensitive to the concentration of Fe3+ cations. The reaction of iodine with N,N'-bis-alkyl-1,4,6,8-naphthalenediimide in chloroform solution have been investigated by spectrophotometric method. The results indicate the formation of two CT-complexes [(DCN1)I]+.I3- and [(DCN2)I]+.I3- at donor:acceptor molar ratio of 1:2. The [(DCN1)I]+.I3- shows the characteristic absorptions of I3- ion at 290 and 360 nm while the charge-transfer transition of [(DCN2)I]+.I3- occurs at 310 nm. Three characteristic bands at the far infrared region in each iodine complex are observed around 135, 105 and 85 cm-1 due to nuas (I-I), nus (I-I) and delta (I3-), respectively with C2v symmetry. The values of the complex formation constant, K, and the absorptivity, epsilon have been calculated.  相似文献   

16.
UV spectroscopy has been used to study the relative donor power of some derivatives of epoxycyclohexane and of glycidyl ether in the formation of charge-transfer complexes (CTC) with iodine. It is shown that the introduction of a second epoxycyclohexane fragment into the molecule of a substituted 1,2-epoxycyclohexane considerably increases the stability of complexes with molecular iodine, and that the donor power of aromatic derivatives of glycidyl ether considerably exceeds that of their structural analogs, derivatives of anisole.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1574–1577, July, 1990.  相似文献   

17.
The charge-transfer complex formation of iodine with antipyrine has been studied spectrophotometrically in chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solutions at 25 degrees C. The results indicate the formation of 1:1 charge-transfer complexes. The observed time dependence of the charge-transfer band and subsequent formation of I(3)(-) in solution were related to the slow transformation of the initially formed 1:1 antipyrine:I(2) outer complex to an inner electron donor-acceptor (EDA) complex, followed by fast reaction of the inner complex with iodine to form a triiodide ion. The values of the equilibrium constant, K, are calculated for each complex and the influence of the solvent properties on the formation of EDA complexes and the rates of subsequent reaction is evaluated.  相似文献   

18.
The electronic and geometric structures of the title complexes are studied quantum chemically using ab initio and density functional approaches. Coupled cluster calculations at the scalar relativistic (basis set) level are performed, and the results are corrected for spin-orbit coupling using data from relativistic density functional theory studies. The heats of formation (kJ mol(-1)) at 298 K are found to be: IO3 147.8, INO3 33.1, OIO 110.1, I2O3 64.0, I2O4 111.3, I2O5 33.0, IOIO 141.3, IOOI 179.9 and OI(I)O 157.9. These data are used to draw a number of conclusions regarding three important aspects of iodine chemistry in the marine boundary layer. (i) Although the IO self reaction produces the asymmetric dimer, IOIO, it is unlikely that this species plays a further role in the atmosphere as it is short-lived. (ii) INO3 is sufficiently stable to explain the kinetics of the recombination reaction between IO and NO2, and the reaction between I2 and NO3 to produce I + INO3 is almost certainly the major source of iodine oxides at night. (iii) The higher iodine oxides I2O3 and I2O5 are very stable molecules, by contrast to the OIO dimer, I2O4, which is much less stable but which should still survive long enough in the marine boundary layer to provide a building block for iodine oxide particle formation.  相似文献   

19.
A cotton cellulose derivative that forms charge-transfer complexes was prepared in yarn form. A charge-transfer complex is composed of two partners, one referred to as the donor and the other as an acceptor of electrical charge. In the present investigation, a donor was chemically bound to the cotton. It was shown that the modified donor cellulose adsorbs various acceptors from solution. Celluloses possessing donor or acceptor moieties are potentially useful as chromatographic agents and also in medicinal chemistry where a controlled release of a chemical agent is desired.  相似文献   

20.
Esters of 2-iodoxybenzoic acid (IBX-esters) were prepared by the hypochlorite oxidation of the corresponding 2-iodobenzoate esters and isolated as chemically stable, microcrystalline products. These hypervalent iodine compounds are potentially valuable oxidizing reagents belonging to a new class of pentavalent iodine compounds with a pseudobenziodoxole structure. Methyl 2-iodoxybenzoate can be further converted to the diacetate or a bis(trifluoroacetate) derivative by treatment with acetic anhydride or trifluoroacetic anhydride, respectively. Single-crystal X-ray diffraction analysis of methyl 2-[(diacetoxy)iodosyl]benzoate 8a reveals a pseudobenziodoxole structure with three relatively weak intramolecular I...O interactions. The dimethyl and diisopropyl esters of 2-iodoxyisophthalic acid were prepared by oxidation of the respective iodoarenes with dimethyldioxirane. Single-crystal X-ray diffraction analysis of diisopropyl 2-iodoxyisophthalate 6b showed intramolecular I...O interaction with the carbonyl oxygen of only one of the two carboxylic groups, while NMR spectra in solution indicated equivalency of both ester groups. IBX-esters, methyl 2-[(diacetoxy)iodosyl]benzoate, and 2-iodoxyisophthalate esters can oxidize alcohols to the respective aldehydes or ketones in the presence of trifluoroacetic acid or boron trifluoride etherate. The bis(trifluoroacetate) derivative can oxidize alcohols to carbonyl compounds without acid catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号