首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To produce an active medium in a gas-dynamic laser, it is necessary to ensure rapid and deep cooling of a mixture of gases (usually CO2-N2-H2O). For this, one uses, as a rule, flat supersonic nozzles with a corner point that are designed for obtaining a flow with Mach number M=4.5–6. The requirements on their dimensions and profile are determined by the kinetics of the relaxation processes in the expanding gas stream and the need to obtain at the exit a sufficiently uniform field of the gas-dynamic parameters. Because of the complexity of making nozzles, one frequently uses simplified shapes, which generate shock waves in the resonator cavity. This increases the divergence of the laser beam and reduces the population inversion of the vibrational levels of the CO2 molecule [1] because of the growth of the temperature and the density behind shock waves. Therefore, for the correct interpretation of the results of measurements of the gain of a weak signal and correct comparison with calculations, it is necessary to make a combined study of the inversion properties of the flow and the aerodynamics of the flow. In the present work, we have investigated the flow structure in a number of small flat nozzles. Data on measurements of in a gas-dynamic laser using these nozzles are given in [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 178–182, September–October, 1980.  相似文献   

2.
One of the methods of designing aircraft with supersonic flight speeds involves solving an inverse problem by means of the well-known flow schemes and the substitution of rigid surfaces for the flow surfaces. Lifting bodies using the flows behind axisymmetric shock waves belong to these configurations. All lifting bodies using the flow behind a conical shock wave can be divided into two types [1]. Bodies whose leading edge passes through the apex of the conical shock wave pertain to the first type and those whose leading edge lies below the apex of the conical shock wave, to the second. For small apex angles of the basic cone at hypersonic flow velocities an approximate solution of the variation problem was obtained, which showed that the lift-drag ratio of lifting bodies of the second type is higher than that of the first [2]. The present paper gives a numerical solution of the problem for flow past lifting bodies of the second type using the flow behind axisymmetric conical shock waves with half-angles of the basic cone S=9.5 and 18° The upper surfaces of the bodies are formed by intersecting planes parallel to the velocity vector of the oncoming flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 135–138, March–April, 1986.  相似文献   

3.
A study is made of the problem of hypersonic flow of an inviscid perfect gas over a convex body with continuously varying curvature. The solution is sought in the framework of the asymptotic theory of a strongly compressed gas [1–4] in the limit M when the specific heat ratio tends to 1. Under these assumptions, the disturbed flow is situated in a thin shock layer between the body and the shock wave. At the point where the pressure found by the Newton-Buseman formula vanishes there is separation of the flow and formation of a free layer next to the shock wave [1–4]. The singularity of the asymptotic expansions with respect to the parameter 1 = ( –1)/( + 1) associated with separation of the strongly compressed layer has been investigated previously by various methods [3–9]. Local solutions to the problem valid in the neighborhood of the singularity have been obtained for some simple bodies [3–7]. Other solutions [7, 9] eliminate the singularity but do not give the transition solution entirely. In the present paper, an asymptotic solution describing the transition from the attached to the free layer is constructed for a fairly large class of flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 99–105, January–February, 1982.  相似文献   

4.
In a formulation analogous to [1–3], a study is made of the flow of a uniform homogeneous hypersonic ideal gas over the windward side of a slender wing whose surface profile depends on the time. The problem is solved by the thin shock layer method [4]. The bow shock is assumed to be attached to the leading edge of the wing at at least one point. The corrections of the first approximation to the main Newtonian flow are found. For wings of finite aspect ratio, when the bow shock is attached along the whole of the leading edge of the wing, computational formulas are obtained for determining the parameters of the gas in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 94–101, July–August, 1979.  相似文献   

5.
The flow of a conductive gas along a channel in an external axiosymmetric magnetic field with a finite value of the magnetogasodynamic parameter N is examined. Numerical flow calculations are performed for a circular tube in such a field. Gas dynamic parameter fields, total pressure losses, and electric current intensities with the presence of transsonic zones and highly compressed regions are determined. Through comparison of the results obtained with linear theory data, the range of applicability of the latter is determined. Of the works dedicated to study of flow in external magnetic fields with N1, we should take note of [1], in which the process of entry of the gas into a transverse magnetic field was examined; [2], which studied one-dimensional transient motion with shock waves; and [3], where mixed flow in a Laval nozzle with an axiosymmetric homogeneous magnetic field was studied. Flow in a circular tube was examined in [4]; but the analysis performed by the characteristic method permitted calculation of only the initial supersonic flow zone. Motion in circular tubes in the presence of an axiosymmetric, magnetic field was studied in the linear formulation in [4, 5].Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 145–155, September–October, 1972.  相似文献   

6.
A shock and subsequent rarefaction wave shock-wave system in a plane supersonic inviscid non-heat-conducting gas flow is considered. An exact analytic solution of the problem of determining the intensities of the waves leading to extreme values of the gasdynamic variables (static pressure, temperature, etc.) behind the wave is found using Lagrangian multipliers. These systems are related to the optimal ones [1, 2]. The parameters of the problem are the free-stream Mach number, the specific heat ratio, and the total flow turning angle in the wave system. Analytic solutions determining the boundaries of monotonic and nonmonotonic behavior of the gasdynamic variables behind the system are presented. The effect of the specific heat ratio on the dimensions of the domains of existence of the optimal waves is investigated.St. Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 142–150, July–August, 1996.  相似文献   

7.
The interaction between convergent axisymmetric shock waves and sharp and blunt cones has been experimentally investigated in a wind tunnel at M=4.67. During the experiments the effect of the conicity angle of the convergent shock wave, the shape of the model and its position relative to the shock-wave configuration on the structure of the flow and the pressure distribution on the model surface was explored.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 177–182, September–October, 1991.In conclusion, the author wishes to thank Yu. M. Lipnitskii for formulating the problem and E. N. Bogachev for assistance in organizing the research.  相似文献   

8.
At present, there are sufficient solutions of the problem of free-molecular gas flow through a short cylindrical channel, for example, [1–3]. In intermediate flow conditions, for Knudsen number Kn 1, solutions have been obtained for the limiting cases: an infinitely long channel [4] and a channel of zero length (an aperture) [5]. However, no solution is known for short channels for Kn 1. The present work reports a calculation by the Monte Carlo method of the macroscopic characteristics of the gas flow through a short cylindrical channel (for various length—radius ratios), taking into account intermolecular collisions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 187–190, January–February, 1977.  相似文献   

9.
A simple model equation that takes into account the nonisentropicity of the flow is. obtained from the equations of a viscous heat-conducting gas. It differs from the Burgers equation in possessing an additional term with a clear physical significance. This equation is suitable for one-dimensional traveling waves on the Mach number interval 1M1.3. The equation obtained gives the asymptotic laws of damping of weak shock waves correct to small terms of the leading and next order for plane [2], cylindrical [3] and spherical [4] symmetry.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 187–190, September–October, 1989.  相似文献   

10.
The flow formed in the neighborhood of the discontinuity intersection point when shock waves collide at a nonzero angle is studied. The investigation can be directly applied to problems of shock wave interaction in the interplanetary plasma [9–12]. In magnetohydrodynamics the nature of the flow and its investigation are much more complex than in gas dynamics because of the greater number of possible waves and governing parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–143, May–June, 1991.  相似文献   

11.
During hypersonic gas flow past a blunt body with a velocity on the order of the escape velocity or more, the gas radiation in the disturbed region behind the shock wave becomes the primary mechanism for aerodynamic heating and has a significant effect on the distribution of the gasdynamic parameters in the shock layer. This problem has been considered from different points of view by many authors. A rather complete review of these studies is presented in [1–4].In earlier studies [5, 6] the approximation of bulk emission was used. In this approximation, in order to account for the effect of radiative heat transfer a term is added in the energy equation which is equivalent to the body efflux, whose magnitude depends on the local thermodynamic state of the gas. However, the use of this assumption to solve the problem of inviscid flow past a blunt body leads to a singularity at the body [7, 8]. To eliminate the singularity, account is taken of the radiation absorption in a narrow wall layer [7], or the concept of a viscous and heat-conductive shock layer is used [8]. A further refinement was obtained by Rumynskii, who considered radiation selectivity and studied the flow of a radiating and absorbing gas in the vicinity of the forward stagnation point of a blunt body.In the present paper we study the distribution of the gasdynamic parameters in the shock layer over the entire frontal surface of a blunt body in a hypersonic flow of a radiating and absorbing gas with account for radiation selectivity.  相似文献   

12.
Results are given of a theoretical and experimental investigation of the intensive interaction between a plasma flow and a transverse magnetic field. The calculation is made for problems formulated so as to approximate the conditions realized experimentally. The experiment is carried out in a magneto-hydrodynamic (MHD) channel with segmented electrodes (altogether, a total of 10 pairs of electrodes). The electrode length in the direction of the flow is 1 cm, and the interelectrode gap is 0.5 cm. The leading edge of the first electrode pair is at x = 0. The region of interaction (the region of flow) for 10 pairs of electrodes is of length 14.5 cm. An intense shock wave S propagates through argon with an initial temperature To = 293 °K and pressure po = 10 mm Hg. The front S moves with constant velocity in the region x < 0 and at time t = 0 is at x = 0. The flow parameters behind the incident shock wave are determined from conservation laws at its front in terms of the gas parameters preceding the wave and the wave velocity WS. The parameters of the flow entering the interaction region are as follows: temperature T 0 1 = 10,000 °K, pressure P 0 1 = 1.5 atm, conduction 0 1 = 3000 –1·m–1, velocity of flow u 0 1 = 3000 m·sec–1, velocity of sounda 0 1 = 1600 m·sec–1, degree of ionization = 2%, 0.4. The induction of the transverse magnetic field B = [0, By(x), 0] is determined only by the external source. Induced magnetic fields are neglected, since the magnetic Reynolds number Rem 0.1. It is assumed that the current j = (0, 0, jz) induced in the plasma is removed using the segmented-electrode system of resistance Re. The internal plasma resistance is Ri = h(A)–1 (h = 7.2 cm is the channel height; A = 7 cm2 is the electrode surface area). From the investigation of the intensive interaction between the plasma flow and the transverse magnetic field in [1–6] it is possible to establish the place x* and time t* of formation of the shock discontinuity formed by the action of ponderomotive forces (the retardation wave RT), its velocity WT, and also the changes in its shape in the course of its formation. Two methods are used for the calculation. The characteristic method is used when there are no discontinuities in the flow. When a shock wave RT is formed, a system of nonsteady one-dimensional equations of magnetohydrodynamics describing the interaction between the ionized gas and the magnetic field is solved numerically using an implicit homogeneous conservative difference scheme for the continuous calculation of shock waves with artificial viscosity [2].Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 112–118, September–October, 1977.  相似文献   

13.
Supersonic flow around a sphere by a viscous gas has been the subject of numerous articles [1–7]. In most of them, however, it is the behavior of the gasdynamic variables on the windward side of the sphere which has been studied. Here the main subject is the structure of the wake behind the body in a supersonic gas flow at small Reynolds numbers. Of existing experimental work on this subject we may note [7]. Theoretical calculations of the wake flow have been done in [4, 6], for example. Here we present the results of a combined theoretical and experimental investigation which allows us to evaluate the agreement between a solution of the complete Navier-Stokes system of equations and a real supersonic flow at Re 102.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 46–51, July–August, 1978.In conclusion, the authors thank V. V. Lunev for useful discussion of the results.  相似文献   

14.
The acoustic resonance effect occurring in the vibrations of an array of profiles (cascade) in a gas flow has been studied by a number of authors [1–8]. Relying on assumptions of a heuristic nature [1, 2, 7, 8] and using rather crude models [4, 6], they have derived criteria governing the acoustic resonance regimes and given the effect a certain physical interpretation. However, many problems of a physical bearing with regard to the quantitative and qualitative principles of the effect have been left unresolved. For a more complete and rigorous solution of the problem the author has previously [9, 10] analyzed the natural modes of a gas flowing past an array of plates It was determined that in the array domain the vibrational modes of the gas are localized in the vicinity, of the array and the eigenvalues are determined by the characteristic dimensions of the interstitial channel (as an open resonator). Also, the eigenfrequences were determined for the gas in the flow plane with the array absent [9]. Under spatial periodic conditions, such that the flow in the plane can be considered as a certain model of flow in an annular duct, these eigenfrequencies concurred with those obtained earlier in [1, 2, 4–6]. The results of [9, 10] are used in the present study as a basis for investigating certain laws and relations governing the unsteady aerodynamic characteristics of arrayed profiles in or close to regimes such that the gas can execute natural vibrations in the array domain and in an annular duct in the absence of the array.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 139–144, September–October, 1972.  相似文献   

15.
Distributed blowing of gas into a supersonic stream from flat surfaces using an inviscid flow model was studied in [1–9]. A characteristic feature of flows of this type is the influence of the conditions specified on the trailing edge of the body on the complete upstream flow field [3–5]. This occurs because the pressure gradient that arises on the flat surface is induced by a blowing layer whose thickness in turn depends on the pressure distribution on the surface. The assumption of a thin blowing layer makes it possible to ignore the transverse pressure gradient in the layer and describe the flow of the blown gas by the approximate thin-layer equations [1–5]. In addition, at moderate Mach numbers of the exterior stream the flow in the blowing layer can be assumed to be incompressible [3]. In [7, 8] a solution was found to the problem of strong blowing of gas into a supersonic stream from the surface of a flat plate when the blowing velocity is constant along the length of the plate. In the present paper, a different blowing law is considered, in accordance with which the flow rate of the blown gas depends on the difference between the pressures on the surface over which the flow occurs and in the reservoir from which the gas is supplied. As in [8, 9], the solution is obtained analytically in the form of universal formulas applicable for any pressure specified on the trailing edge of the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 108–114, September–October, 1980.I thank V. A. Levin for suggesting the problem and assistance in the work.  相似文献   

16.
Solution of the complete system of Navier-Stokes equations forms the basis for a study of the nature of flow of a viscous heat-conducting gas in the neighborhood of a trailing edge of a flat plate. The problem was solved in accordance with a difference scheme of the third order of accuracy [1]. The calculation was carried out under the same conditions as the experiment of [2], in which a plate of finite dimensions (L = 12 cm) had supersonic M = 2, Re, = 1000 gas flow round it. In order to obtain a thickness of the boundary layer which was acceptable for the purpose of making the measurements (of the order of 2 cm), the unperturbed gas was slightly rarefied. In the study of such problems [3–7] it is necessary to use the complete system of Navier-Stokes equations, since in the immediate neighborhood of the trailing edge one of the important assumptions in the theory of the boundary layer, 2u/y2 2u/x2, does not hold. As a result the flow upstream near the trailing edge of the plate will depend on the flow immediately behind the edge, since the perturbations propagate both upstream and downstream in this case. The rarefaction of the gas creates additional difficulties in the formulation of the boundary conditions on the plate with flow round it when this problem is studied numerically.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 27–30, March–April, 1987.  相似文献   

17.
The conditions of realization of regimes, detected in ideal gas theory [1, 2], with a floating Ferri point on the windward side of a wing with supersonic leading edges and breakdown of the conical flow in the presence of turbulent boundary layer separation are studied using experimental data on the flow over conical V-shaped wings. The experiments were carried out on three models of V-shaped wings with sharp leading edges having a convergence angle=40°, apex angles=30, 45, and 90° and lengths along the central chordL=100, 100, and 70 mm, respectively. The free-stream Mach numberM =3, and the unit Reynolds number Re=1.6 ·108 m–1. Boundary layer transition took place 10 mm from the leading edges of the models at a local Reynolds number Re=(1.5–2)·106. Thus, on most of the wing surface the inner shock waves interacted with a turbulent boundary layer. In the experiments we employed; optical methods, which made it possible to observe shadow flow patterns in a plane normal to the rib of the V-shaped wing [3], as well as in the wake behind the wing and its leading edges (Töpler schlieren method); the oil-film visualization method for obtaining data on the position and dimensions of the separation zones and limiting streamline patterns on the surface of the model. The pressure distribution over the wing span was recorded by means of an automated data collection and processing system based on IKD6TD transducers. The errors of the pressure measurements did not exceed 1 %.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 137–150, March–April, 1992.  相似文献   

18.
Nonlinear development and interaction of disturbances in the classical Bernard-Rayleigh problem has been considered in a number of works [1, 2]. As a rule, the investigation leads to the construction and study of model equations of Landau's type [3–6]. In the present work the convection equation in the Boussinesq approximation is solved with the aid of direct methods [7–10]. We investigate the evolution of the disturbances which are a superposition of two waves with different wave numbers 1 and 2. We consider the appearance of harmonics of the form n1 ± m2, where n and m are integers. The main attention is given to problems of the onset of turbulence [11]. The numerical experments carried out showed that the consideration of the interaction of a limited number of harmonics (from 23 to 500) allows one to reproduce some characteristic features of the motion during the onset of turbulence.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 9–15, March–April, 1977.  相似文献   

19.
The results are presented on a numerical study of the propagation of strongly underexpanded jets of an ideal gas in a flooded space with Mach numbers at the nozzle cut slightly exceeding unity. In this case the angle of turn of the stream in the vicinity of the rim of the conical nozzle can exceed 90 and the boundary of the jet turns back beyond the cross section of the nozzle cut. It is shown that the square root of the expansion ratio of the discharge is a self-similarity parameter for the geometrical dimensions of the calculated jets. The dependence of the longitudinal dimensions of such jets on the Mach number at the nozzle cut is close to linear. The effect of the adiabatic index on the shape of the jet boundary and the suspended compression shock is illustrated. The integration of the steady system of gasdynamic equations describing the two-dimensional supersonic flow of a nonviscous and thermally nonconducting gas, performed by a monotonie finite-difference system of through calculation of the first order of accuracy, was proposed in [1, 2] and generalized to the case of arbitrary orientation of the velocity vector in the plane of flow in [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 151–154, November–December, 1976.The authors are grateful to A. N. Kraiko for attention to the work.  相似文献   

20.
The hydrodynamic equations of Chew, Goldberger, and Low [1] are used to analyze certain types of two-dimensional flows of a plasma with an anisotropic pressure (the pressure along the magnetic field p differs from the pressure across it p). In Sec. 1 the relationships derived in [2] for the transition of plasma state across surfaces of strong discontinuity are invoked to investigate the variation of the hydrodynamic parameters in weak shock waves in the linear approximation. The flow around bodies which only slightly perturb the main flow is investigated in Sec. 2 in the linear approximation. Similar problems for the case of an isotropic pressure are studied in detail in [3–5], for example.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 3–10, November–December, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号