首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a series of heteronuclear NMR experiments for the direct observation and characterization of lysine NH3 groups in proteins. In the context of the HoxD9 homeodomain bound specifically to DNA we were able to directly observe three cross-peaks, arising from lysine NH3 groups, with 15N chemical shifts around approximately 33 ppm at pH 5.8 and 35 degrees C. Measurement of water-exchange rates and various types of 15N transverse relaxation rates for these NH3 groups, reveals that rapid water exchange dominates the 15N relaxation for antiphase coherence with respect to 1H through scalar relaxation of the second kind. As a consequence of this phenomenon, 15N line shapes of NH3 signals in a conventional 1H-15N heteronuclear single quantum coherence (HSQC) correlation experiment are much broader than those of backbone amide groups. A 2D 1H-15N correlation experiment that exclusively observes in-phase 15N transverse coherence (termed HISQC for heteronuclear in-phase single quantum coherence spectroscopy) is independent of scalar relaxation in the t(1) (15N) time domain and as a result exhibits strikingly sharper 15N line shapes and higher intensities for NH3 cross-peaks than either HSQC or heteronuclear multiple quantum coherence (HMQC) correlation experiments. Coherence transfer through the relatively small J-coupling between 15Nzeta and 13Cepsilon (4.7-5.0 Hz) can be achieved with high efficiency by maintaining in-phase 15N coherence owing to its slow relaxation. With the use of a suite of triple resonance experiments based on the same design principles as the HISQC, all the NH3 cross-peaks observed in the HISQC spectrum could be assigned to lysines that directly interact with DNA phosphate groups. Selective observation of functional NH3 groups is feasible because of hydrogen bonding or salt bridges that protect them from rapid water exchange. Finally, we consider the potential use of lysine NH3 groups as an alternative probe for larger systems as illustrated by data obtained on the 128-kDa enzyme I dimer.  相似文献   

2.
The Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation dispersion NMR experiment is a powerful means for detecting and characterizing conformational exchange. This experiment reports the exchange of chemical shifts and therefore can monitor all chemical exchange phenomena, not only intramolecular conformational exchange. Here, we report a CPMG transverse relaxation dispersion study for the monomer-dimer equilibrium of the GB1 point mutant, Ala-34-Phe (GB1(A34F)). This variant exists predominantly as a side-by-side dimer at high concentration (>1 mM). We demonstrate that the dispersion experiment is exceptionally valuable for studying association equilibria since it is extremely sensitive to the minor population in the equilibrium. Twenty-eight individual amide sites in the GB1(A34F) dimer protein were monitored via a 2D (15)N-(1)H HSQC spectroscopy, and all relaxation-derived data are consistent with predominantly an exchange process between dimer and monomer species.  相似文献   

3.
Pulse sequences for spin-1/2-spin-1 pair heteronuclear single quantum correlation (HSQC), heteronuclear double quantum correlation (HDQC), and coupled-HSQC, and coupled-HDQC NMR spectroscopies are outlined, and experimental realization for a (13)C-(2)H pair is demonstrated in solution state. In both the coupled versions, conditions for generation of in-phase and antiphase multiplets in either dimension are arrived at. The patterns and the intensity ratios are explained. The double quantum (2Q) experiments confirm doubling of both the shift frequency and the splitting due to coupling (to spin 1/2) of the 2Q coherence emanating from spin 1. The frequency doubling is equivalent to the corresponding single quantum (1Q) coherence at double the magnetic field strength. The coupling doubling, however, is independent of the magnetic field strength and a signature feature of the 2Q coherence. The ramification of the relative relaxation rates of 1Q and 2Q coherences is discussed.  相似文献   

4.
以异核单量子相关(HSQC)、异核多量子相关(HMQC)核磁共振理论为基础,实现了一维非选择性1H-31P HSQC、1H-31P异核单量子结合多键相关(HSQMBC)脉冲序列,并自主设计了一维非选择性1H-31P HMQC脉冲序列,研究了3种技术在峰形、灵敏度上的差异。通过对某次国际禁化武组织水平考试的水样分析发现,非选择性1H-31P HMQC方法是目前用于筛选含磷化学毒剂相关化合物的最有效方法。  相似文献   

5.
A new (15)N constant-time relaxation dispersion pulse scheme for the quantification of millisecond time-scale exchange dynamics in proteins is presented. The experiment differs from previously developed sequences in that it includes (1)H continuous-wave decoupling during the (15)N Carr-Purcell-Meiboom-Gill (CPMG) pulse train that significantly improves the relaxation properties of (15)N magnetization, leading to sensitivity gains in experiments. Moreover, it is shown that inclusion of an additional (15)N 180 degrees refocusing pulse (phase cycled +/- x) in the center of the CPMG pulse train, consisting of 1(5)N 180 degrees (y) pulses, provides compensation for pulse imperfections beyond the normal CPMG scheme. Relative to existing relaxation-compensated constant-time relaxation dispersion pulse schemes, nu(CPMG) values that are only half as large can be employed, offering increased sensitivity to slow time-scale exchange processes. The robustness of the methodology is illustrated with applications involving a pair of proteins: an SH3 domain that does not show millisecond time-scale exchange and an FF domain with significant chemical exchange contributions.  相似文献   

6.
Heteronuclear single quantum coherence (HSQC) sequences using adiabatic (or composite) 180 degrees pulses, suitable for applications requiring wide spectral widths in F2, are described. The sequences can be used with or without multiplicity editing. One variant will work even in the presence of homonuclear couplings that are equal to the heteronuclear 1-bond coupling.  相似文献   

7.
Na Z  Xu YK 《Natural product research》2010,24(17):1648-1653
A new prenylated xanthone, named bannaxanthone I, has been isolated from the leaves of Garcinia xipshuanbannaensis, along with five other known compounds, bannaxanthone E, mangostinone, tovophyllin A, garcinone E, and γ-mangostin. The structure of the new compound was elucidated on the basis of high-resolution fast atom bombardment mass spectra (HRFABMS), 1D-and 2D-NMR experiments, including heteronuclear multiple bond connectivity (HMBC), heteronuclear single quantum coherence (HSQC) and 1H-1H-COSY (correlated spectroscopy, COSY).  相似文献   

8.
(15)N relaxation dispersion experiments were applied to the isolated N-terminal SH3 domain of the Drosophila protein drk (drkN SH3) to study microsecond to second time scale exchange processes. The drkN SH3 domain exists in equilibrium between folded (F(exch)) and unfolded (U(exch)) states under nondenaturing conditions in a ratio of 2:1 at 20 degrees C, with an average exchange rate constant, k(ex), of 2.2 s(-1) (slow exchange on the NMR chemical shift time scale). Consequently a discrete set of resonances is observed for each state in NMR spectra. Within the U(exch) ensemble there is a contiguous stretch of residues undergoing conformational exchange on a micros/ms time scale, likely due to local, non-native hydrophobic collapse. For these residues both the F(exch) <--> U(exch) conformational exchange process and the micros/ms exchange event within the U(exch) state contribute to the (15)N line width and can be analyzed using CPMG-based (15)N relaxation dispersion measurements. The contribution of both processes to the apparent relaxation rate can be deconvoluted numerically by combining the experimental (15)N relaxation dispersion data with results from an (15)N longitudinal relaxation experiment that accurately quantifies exchange rates in slow exchanging systems (Farrow, N. A.; Zhang, O.; Forman-Kay, J. D.; Kay, L. E. J. Biomol. NMR 1994, 4, 727-734). A simple, generally applicable analytical expression for the dependence of the effective transverse relaxation rate constant on the pulse spacing in CPMG experiments has been derived for a two-state exchange process in the slow exchange limit, which can be used to fit the experimental data on the global folding/unfolding transition. The results illustrate that relaxation dispersion experiments provide an extremely sensitive tool to probe conformational exchange processes in unfolded states and to obtain information on the free energy landscape of such systems.  相似文献   

9.
Often, deregulation of protein activity and turnover by tyrosine nitration drives cells toward pathogenesis. Hence, understanding how the nitration of a protein affects both its function and stability is of outstanding interest. Nowadays, most of the in vitro analyses of nitrated proteins rely on chemical treatment of native proteins with an excess of a chemical reagent. One such reagent, peroxynitrite, stands out for its biological relevance. However, given the excess of the nitrating reagent, the resulting in vitro modification could differ from the physiological nitration. Here, we determine unequivocally the configuration of distinct nitrated-tyrosine rings in single-tyrosine mutants of cytochrome?c. We aimed to confirm the nitration position by a non-destructive method. Thus, we have resorted to (1)H-(15)N heteronuclear single quantum coherence(HSQC) spectra to identify the (3)J(N?H) correlation between a (15)N-tagged nitro group and the adjacent aromatic proton. Once the chemical shift of this proton was determined, we compared the (1)H-(13)C HSQC spectra of untreated and nitrated samples. All tyrosines were nitrated at ε positions, in agreement to previous analysis by indirect techniques. Notably, the various nitrotyrosine residues show a different dynamic behaviour that is consistent with molecular dynamics computations.  相似文献   

10.
Assignments of 1H and 13C NMR chemical shifts were made by means of heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) experiments for ondansetron, and by means of 1H-1H correlation spectroscopy (1H-1H COSY) and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments for two novel metabolites (M1 and M2) of ondansetron. These two metabolites were isolated for the first time from Mucor circinelloides.  相似文献   

11.
In the present work we demonstrate a novel method for spectral simplification and determination of the relative signs of the scalar couplings using a spin selective multiple quantum NMR experiment. A spin selective excitation of double quantum coherence of A and M spins in a weakly coupled three spin system of the type AMX, results in a doublet in the double quantum dimension whose separation corresponds to the sum of couplings of the active spins to the passive spin X. One component of the doublet has the passive spin X in mid R:alpha state while the other component has the passive spin X in mid R:beta state. The spin selective conversion of double quantum coherence to single quantum coherence does not disturb the spin states of the passive spin thereby providing the spin state selection. There will be two domains of single quantum transitions in single quantum dimension at the chemical shift positions of A and M spins. The mid R:alpha domain of A spin is a doublet because of mid R:alpha and mid R:beta states of M spin only, while that of mid R:beta domain is another doublet in a different cross section of the spectra. The scalar coupling J(AM) can be extracted from any of the mid R:alpha and mid R:beta domain transitions while the relative displacements of the two doublets between the two domains at the two chemical shifts provides the magnitude and sign of the scalar coupling J(AX) relative to the coupling J(MX). Similar result is obtained for zero quantum studies on AMX spin system. The proposed technique is discussed theoretically using product operator approach. The new spin state selective double quantum J-resolved sequence has also been developed. The methodology is confirmed experimentally on a homonuclear weakly coupled three spin system and applied to two different heteronuclear five spin systems.  相似文献   

12.
Several groups of authors have reported studies in the areas of indirect and unsymmetrical indirect covariance NMR processing methods. Efforts have recently focused on the use of unsymmetrical indirect covariance processing methods to combine various discrete two-dimensional NMR spectra to afford the equivalent of the much less sensitive hyphenated 2D NMR experiments, for example indirect covariance (icv)-heteronuclear single quantum coherence (HSQC)-COSY and icv-HSQC-nuclear Overhauser effect spectroscopy (NOESY). Alternatively, unsymmetrical indirect covariance processing methods can be used to combine multiple heteronuclear 2D spectra to afford icv-13C-15N HSQC-HMBC correlation spectra. We now report the use of responses contained in indirect covariance processed HSQC spectra as a means for the identification of artifacts in both indirect covariance and unsymmetrical indirect covariance processed 2D NMR spectra.  相似文献   

13.
A reliable method of automatically assigning one-dimensional proton spectra is described. The method relies on the alignment of the proton spectrum with an associated heteronuclear single-quantum coherence (HSQC) spectrum, transferring the stoichiometry and couplings to the HSQC. The HSQC spectrum is then assigned using a linear assignment procedure in which a fitness function incorporating (1)H chemical shifts, (1)H couplings and (13)C shifts are employed. The method uniquely employs a sequential procedure in which only correlations of like stoichiometry are assigned at the same time.  相似文献   

14.
The three-site exchange folding reaction of an (15)N-labeled, highly deuterated Gly48Met mutant of the Fyn SH3 domain has been characterized at 25 degrees C using a suite of six CPMG-type relaxation dispersion experiments that measure exchange contributions to backbone (1)H and (15)N transverse relaxation rates in proteins. It is shown that this suite of experiments allows the extraction of all the parameters of this multisite exchange process in a robust manner, including chemical shift differences between exchanging states, from a data set recorded at only a single temperature. The populations of the exchanging folded, intermediate, and unfolded states that are fit are 94, 0.7, and 5%, respectively. Despite the small fraction of the intermediate, structural information is obtained for this state that is consistent with the picture of SH3 domain folding that has emerged from other studies. Taken together, the six dispersion experiments facilitate the complete reconstruction of (1)H-(15)N correlation spectra for the unfolded and intermediate states that are "invisible" in even the most sensitive of NMR experiments.  相似文献   

15.
Poly(n-butylacrylate-co-carbon monoxide-co-ethylene) (polyEBC) samples prepared from 13C-labeled monomer, n-butyl acrylate, were characterized using two dimensional (2D) pulsed field gradient (PFG) 750 MHz NMR spectroscopy. To elucidate the complex structure of the terpolymer, 2D-1H/13C-heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) experiments were conducted by selectively exciting the enhanced resonances in the spectra of two polymer samples, one polymer resulting from synthesis with 1-13C-n-butylacrylate monomer and a second polymer obtained from a synthesis with 2-13C-n-butylacrylate monomer. High-resolution 2D-NMR combined with 13C-labeling of the polymer greatly simplifies the 2D-NMR spectra, selectively enhances the weak peaks from low occurrence B-centered triad structures, and aids in their resonance assignments. In all experiments, the sample temperature was 120 degrees C, to ensure a homogeneous solution and sufficient molecular mobility. Electronic Supplementary Material: Supplementary material (1D 13C NMR spectra of the 13C-labeled and unlabeled polymers) is available in the online version of this article at http://dx.doi.org/100.1007/s00216-003-2402-3.  相似文献   

16.
17.
Often, deregulation of protein activity and turnover by tyrosine nitration drives cells toward pathogenesis. Hence, understanding how the nitration of a protein affects both its function and stability is of outstanding interest. Nowadays, most of the in vitro analyses of nitrated proteins rely on chemical treatment of native proteins with an excess of a chemical reagent. One such reagent, peroxynitrite, stands out for its biological relevance. However, given the excess of the nitrating reagent, the resulting in vitro modification could differ from the physiological nitration. Here, we determine unequivocally the configuration of distinct nitrated‐tyrosine rings in single‐tyrosine mutants of cytochrome c. We aimed to confirm the nitration position by a non‐destructive method. Thus, we have resorted to 1H‐15N heteronuclear single quantum coherence(HSQC) spectra to identify the 3J(N? H) correlation between a 15N‐tagged nitro group and the adjacent aromatic proton. Once the chemical shift of this proton was determined, we compared the 1H‐13C HSQC spectra of untreated and nitrated samples. All tyrosines were nitrated at ε positions, in agreement to previous analysis by indirect techniques. Notably, the various nitrotyrosine residues show a different dynamic behaviour that is consistent with molecular dynamics computations.  相似文献   

18.
Poly(vinyl acetate) (PVA) prepared by photopolymerization was studied by a combination of one and two dimensional NMR spectroscopy. The 13C{1H} and 1H NMR spectra of the homopolymer (PVA) were assigned to the configurational pentads (CH region) and tetrads (CH2 region). These assignments were substantiated by the use of two dimensional heteronuclear single quantum correlation (HSQC), heteronuclear single quantum correlation‐total correlation spectroscopy (HSQC‐TOCSY) and double quantum filtered correlation spectroscopy (DQFCOSY) experiments. The results obtained by the analysis of the area under the resonance signals confirmed that PVA obeys Bernoullian statistics. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 551–556, 1999  相似文献   

19.
A facile synthetic method for the construction of 2-substituted-4-oxo-4H-quinolizine-based core structure has been successfully developed. The synthesis made use of a one-pot Stobbe condensation followed by cyclization starting from the commercially available 2-pyridinecarbaldehyde. The structure of the formed 4-oxo-4H-quinolizine-2-carboxylate was fully confirmed by mass spectra, 1H NMR and 13C NMR, correlation spectrography, heteronuclear multiple bond correlation, and heteronuclear single quantum coherence (HSQC) spectra. The ethyl carboxylate moiety was then further functionalized via direct aminolysis by a range of amines to afford the corresponding 4-oxo-4H-quinolizine-2-carboxamides 4a–i in moderate to good yields.  相似文献   

20.
A new sesquiterpene evoninate alkaloid (1), and two sesquiterpenes (2, 3) with a dihydro-beta-agarofuran skeleton, along with three known sesquiterpenes (4-6), were isolated from the seeds of Euonymus europaeus. Their structures were elucidated by high resolution mass analysis, and one- and two-dimensional (1D and 2D) NMR spectroscopy, including homonuclear and heteronuclear correlation [correlation spectroscopy (COSY), rotating frame Overhauser enhancement spectroscopy (ROESY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC)] experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号