首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A gas of strongly interacting single-species (spinless) p-orbital fermionic atoms in 2D optical lattices is proposed and studied. Several interesting new features are found. In the Mott limit on a square lattice, the gas is found to be described effectively by an orbital exchange Hamiltonian equivalent to a pseudospin-1/2 XXZ model. For a triangular, honeycomb, or kagome lattice, the orbital exchange is geometrically frustrated and described by a new quantum 120 degrees model. We determine the orbital ordering on the kagome lattice, and show how orbital wave fluctuations select ground states via the order by disorder mechanism for the honeycomb lattice. We discuss experimental signatures of various orbital ordering.  相似文献   

2.
We investigate the effect of geometry on the ground-state ordering of artificially frustrated magnetic rectangular and triangular lattices by Monte Carlo method. By varying the vertical lattice spacing while keeping the horizontal one fixed, we show that when the ratio of vertical to horizontal lattice spacing, labeled by η, is less than 1.82, the ground state of the rectangular lattice presents long-range antiferromagnetic order and for η?1.82 the ground state changes to long-range mixed ferromagnetic and antiferromagnetic order. For the frustrated triangular lattice, the short-range ordered state as well as two long-range ordered ground states occurs transiently at η=0.87 and 2, where the energies of the two ground states with long-range order are approximately equal. In addition, the level of frustration of both frustrated lattices is found to be largely relevant to the ratio η.  相似文献   

3.
We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate a number of terms in the scaling function expansion around both the ferromagnetic and, for the square and honeycomb lattices, the antiferromagnetic critical point.  相似文献   

4.
梁雅秋  魏国柱  张起  邱巍  藏树良 《中国物理》2004,13(12):2147-2152
A spin-1/2 and spin-3/2 mixed Ising system in a random field is studied by the use of effective-field theory with correlations. The phase diagrams and thermal behaviours of magnetizations are investigated numerically for the honeycomb lattice (z=3) and square lattice (z=4) respectively. The tricritical behaviours for both honeycomb and square lattices, as well as the reentrant behaviour for the square lattice are found.  相似文献   

5.
We study inhomogeneous Ising models on triangular and honeycomb lattices. The nearest neighbour couplings can have arbitrary strength and sign such that the coupling distribution is translationally invariant in the direction of one lattice axis, i.e. the models have a layered structure. By using a transfer matrix method we derive closed form expressions for the partition functions and free energies. The critical temperatures are calculated. Phase transitions at a finite critical temperature are universally of Ising type. Models with no phase transition may show different behaviour atT=0, which is explicitly shown for fully frustrated models on square, triangular and honeycomb lattices. Finally, generalizations to layered Ising models on more general lattices are discussed.Work performed within the research program of the Sonderforschungsbereich 125 Aachen-Jülich-Köln  相似文献   

6.
We employ an effective-field theory with correlations in order to study the phase diagram and ground-state magnetizations of a selectively diluted Ising antiferromagnet on triangular and honeycomb lattices. Dilution of different sublattices with generally unequal probabilities results in a rather intricate phase diagram in the sublattice dilution parameters space. In the case of the frustrated triangular lattice antiferromagnet the selective dilution affects the degree of frustration which can lead to some peculiar phenomena, such as reentrant behavior of long-range order or unsaturated sublattice magnetizations at zero temperature. The selectively diluted Ising antiferromagnet on the honeycomb lattice is obtained as a special case when one sublattice of the triangular lattice is completely removed by dilution.  相似文献   

7.
The distribution of complex temperature zeros of the partition function of the two-dimensional Ising model in the absence of a magnetic field is investigated. For anisotropic square and triangular lattices the distribution function is two-dimensional and satisfies a partial differential equation derived from a generalized scaling theory. Corresponding results for the isotropic square, triangular and honeycomb lattices are also presented.  相似文献   

8.
We study numerically the nature of the diffusion process on a honeycomb and a quasi-lattice, where a point particle, moving along the bonds of the lattice, scatters from randomly placed scatterers on the lattice sites according to strictly deterministic rules. For the honeycomb lattice fully occupied by fixed rotators two (symmetric) isolated critical points appear to be present, with the same hyperscaling relation as for the square and the triangular lattices. No such points appear to exist for the quasi-lattice. A comprehensive comparison is made with the behavior on the previously studied square and triangular lattices. A great variety of diffusive behavior is found, ranging from propagation, superdiffusion, normal, quasi-normal, and anomalous, to absence of diffusion. The influence of the scattering rules as well as of the lattice structure on the diffusive behavior of a point particle moving on the all lattices studied so far is summarized.  相似文献   

9.
For a class of frustrated antiferromagnetic spin lattices (in particular, the square-kagomé and kagomé lattices) we discuss the impact of recently discovered exact eigenstates on the stability of the lattice against distortions. These eigenstates consist of independent localized magnons embedded in a ferromagnetic environment and become ground states in high magnetic fields. For appropriate lattice distortions fitting to the structure of the localized magnons the lowering of magnetic energy can be calculated exactly and is proportional to the displacement of atoms leading to a spin-Peierls lattice instability. Since these localized states are present only for high magnetic fields, this instability might be driven by magnetic-field. The hysteresis of the spin-Peierls transition is also discussed.  相似文献   

10.
Wu C 《Physical review letters》2008,100(20):200406
We investigate the general structure of orbital exchange physics in Mott-insulating states of p-orbital systems in optical lattices. Orbital orders occur in both the triangular and kagome lattices. In contrast, orbital exchange in the honeycomb lattice is frustrated as described by a novel quantum 120 degrees model. Its classical ground states are mapped into configurations of the fully packed loop model with an extra U(1) rotation degree of freedom. Quantum orbital fluctuations select a six-site plaquette ground state ordering pattern in the semiclassical limit from the "order from disorder" mechanism. This effect arises from the appearance of a zero energy flat band of orbital excitations.  相似文献   

11.
In order to study the magnetic properties of frustrated metallic systems, we present, for the first time, quantum Monte Carlo data on the magnetic susceptibility of the Hubbard model on triangular and kagomé lattices. We show that the underlying lattice structure determines the nature and the doping dependence of the magnetic fluctuations. In particular, in the doped kagomé case we find strong short-range magnetic correlations, which makes the metallic kagomé systems a promising field for studies of superconductivity.  相似文献   

12.
Topological aspects of the electronic properties of graphene, including edge effects, with the tight-binding model on a honeycomb lattice and its extensions to show the following: (i) Presence of the pair of massless Dirac dispersions, which is the origin of anomalous properties including a peculiar quantum Hall effect (QHE), is not accidental to honeycomb, but is generic for a class of two-dimensional lattices that interpolate between square and π-flux lattices. Topological stability guarantees persistence of the peculiar QHE. (ii) While we have the massless Dirac dispersion only around E=0, the anomalous QHE associated with the Dirac cone unexpectedly persists for a wide range of the chemical potential. The range is bounded by van Hove singularities, at which we predict a transition to the ordinary fermion behaviour accompanied by huge jumps in the QHE with a sign change. (iii) We establish a coincidence between the quantum Hall effect in the bulk and the quantum Hall effect for the edge states, which is another topological effect. We have also explicitly shown that the E=0 edge states in honeycomb in zero magnetic field persist in magnetic field. (iv) We have also identified a topological origin of the fermion doubling in terms of the chiral symmetry.  相似文献   

13.
The static polarizability of cylindrical systems is shown to have a strong dependence on a uniform magnetic field applied parallel to the tube axis. This dependence is demonstrated by performing exact numerical diagonalizations of simple cylinders (rolled square lattices), armchair and zig-zag carbon nanotubes (rolled honeycomb lattices) for different electron-fillings. At low temperature, the polarizability as function of the magnetic field has a discontinuous character where plateau-like region are separated by sudden jumps or peaks. A one to one correspondence is pointed out between each discontinuity of the polarizability and the magnetic-field induced cross-over between the ground state and the first excited state. Our results suggest the possibility to use measurements of the static polarizability under magnetic field to get important informations about excited states of cylindrical systems such as carbon nanotubes. Received 29 March 2001 and Received in final form 8 August 2001  相似文献   

14.
Ying Li  Tian-Xing Wang 《Physica A》2011,390(12):2388-2394
The magnetic ordering of frustrated arrays of nanoscale islands can be strongly influenced by the array patterns. We theoretically present three kinds of artificial geometrically frustrated systems with different brick-shaped geometries, defined as brick-shaped lattices, and investigate their magnetic dipolar ordering at the ground state using the Monte Carlo method. The simulated results show that the magnetic ordering of three brick-shaped frustrated lattices depends strongly on the strength of dipolar interactions, depending on the lattice spacing. It is found that the long-range dipolar interactions tend to suppress the long-range ordered state and induce the short-range quasi-ice state at each vertex of the lattices. In addition, the correlations for neighboring spin pairs are closely related to not only the dipolar coupling strength but also the geometry of the lattices.  相似文献   

15.
We discuss the simultaneous existence of phononic and photonic band gaps in two types of phononic crystals slabs, namely periodic arrays of nanoholes in a Si membrane and of Si nanodots on a SiO2 membrane. In the former geometry, we investigate in detail both the boron nitride lattice and the square lattice with two atoms per unit cell (these include the square, triangular and honeycomb lattices as particular cases). In the latter geometry, some preliminary results are reported for a square lattice.  相似文献   

16.
Plane wave propagation in infinite two-dimensional periodic lattices is investigated using Floquet-Bloch principles. Frequency bandgaps and spatial filtering phenomena are examined in four representative planar lattice topologies: hexagonal honeycomb, Kagomé lattice, triangular honeycomb, and the square honeycomb. These topologies exhibit dramatic differences in their long-wavelength deformation properties. Long-wavelength asymptotes to the dispersion curves based on homogenization theory are in good agreement with the numerical results for each of the four lattices. The slenderness ratio of the constituent beams of the lattice (or relative density) has a significant influence on the band structure. The techniques developed in this work can be used to design lattices with a desired band structure. The observed spatial filtering effects due to anisotropy at high frequencies (short wavelengths) of wave propagation are consistent with the lattice symmetries.  相似文献   

17.
We predict that an external field can induce a spin ordering in highly frustrated classical Heisenberg magnets. We find analytically stabilization of collinear states by thermal fluctuations at a one-third of the saturation field for kagome and garnet lattices and at a half of the saturation field for pyrochlore and frustrated square lattices. This effect is studied numerically for the frustrated square-lattice antiferromagnet by Monte Carlo simulations for classical spins and by exact diagonalization for S = 1/2. The field induced collinear states have a spin gap and produce magnetization plateaus.  相似文献   

18.
Harper equations are derived for a px, py electronic system. Analysis is carried out for extreme points of the quasi-continuous spectrum in the cases when the number of magnetic flux quanta through a unit cell is a rational number and calculations are made for square and triangular lattices as well as for a honeycomb lattice with two nonequivalent atoms. The possibility of application of the results for explaining the fractional Hall effect is considered.  相似文献   

19.
The random-walk formalism that describes correlation functions in a homogenous system is here extended to cover correlations in ordered phases of a lattice gas. The general method is illustrated by application to certain lattice gases on linear, square and honeycomb lattices, treated under the Percus-Yevick approximation.  相似文献   

20.
I studied the ferrimagnetic Ising model with nearest neighbour interactions for a square lattice and simple cubic one, using mean field theory. The free energy of a mixed spin Ising ferrimagnetic model was calculated from a mean field approximation of the Hamiltonian. By minimizing the free energy, I obtained the equilibrium magnetizations and the compensation temperatures. Clear indications of the single-ion anisotropies on the compensation points of the mixed spin-3/2 and spin-5/2 ferrimagnetic lattices are found. Some interesting behaviors of these systems are obtained depending not only on the values of magnetic anisotropies for both sublattice sites but also on the lattice structure. The longitudinal magnetic fields dependence of the spin compensation temperature is the main focus of research. The possibility of many compensation temperatures is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号