首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
The efficiency of drug metabolism by a single enzyme can be measured as the fractional metabolic clearance which can be used as a measure of whole body activity for that enzyme. Measurement of activity of multiple enzymes simultaneously is feasible using a cocktail approach, however, analytical approach using different assays for drug probes can be cumbersome. A quantitative ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) based method for the rapid measurement of six cytochrome P450 (CYP) probe drugs and their relevant metabolites is described. The six specific probe substrates/metabolites are caffeine/paraxanthine (CYP1A2), flurbiprofen/4'-hydroxyflurbiprofen (CYP2C9), mephenytoin/4'-hydroxymephenytoin (CYP2C19), debrisoquine/4-hydroxydebrisoquine (CYP2D6), chlorzoxazone/6'-hydroxychlorzoxazone (CYP2E1) and dapsone/N-monoacetyldapsone (NAT2). These probes were quantified by stable isotope dilution from plasma and urine. The present workflow provides a robust, fast and sensitive assay for the "Pittsburgh cocktail", and has been successfully applied to a clinical phenotyping study of liver disease. A representative group of 17 controls and patients with chronic liver disease were administered orally caffeine (100 mg), chlorzoxazone (250 mg), debrisoquine (10 mg), mephenytoin (100 mg), flurbiprofen (50 mg) and dapsone (100 mg). Urine (0 through 8 h) and plasma (4 and 8 h) samples were analyzed for drug/metabolite amounts by stable isotope dilution UPLC-MS/MS. The phenotypic activity of drug metabolizing enzymes was investigated with 17 patient samples. Selected reaction monitoring (SRM) was optimized for each drug and metabolite. In the method developed, analytes were resolved by reversed-phase by development of a gradient using a water/methanol solvent system. SRM of each analyte was performed in duplicate on a triple quadrupole mass spectrometer utilizing an 8 min analytical method each, one with the source operating in the positive mode and one in the negative mode, using the same solvent system. This method enabled quantification of each drug (caffeine, chlorzoxazone, debrisoquine, mephenytoin, flurbiprofen, and dapsone) and its resulting primary metabolite in urine or plasma in patient samples. The method developed and the data herein demonstrate a robust quantitative assay to examine changes in CYP enzymes both independently or as part of a cocktail. The clinical use of a combination of probe drugs with UPLC-MS/MS is a highly efficient tool for the assessment of CYP enzyme activity in liver disease.  相似文献   

2.
A highly sensitive liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of midazolam and its major metabolites 1'-hydroxymidazolam and 4-hydroxymidazolam in human plasma was developed and validated. Stable isotope-labeled midazolam-D(4) and 1'-hydroxymidazolam-D(4) were used as internal standards. Compounds were extracted from 0.5 mL plasma by liquid-liquid extraction with ethyl acetate-heptane (1:4). Chromatography was achieved using a Sunfire C(18) column. The mobile phase was a gradient with 10 m m formic acid in Milli-Q water and methanol at a flow rate of 0.3 mL/min. Total run time was 10 min. Detection was performed using a tandem mass spectrometer with positive electrospray ionization. Calibration curves were linear over the range of 0.10-50.0 ng/mL for midazolam and 0.025-25.0 ng/mL for both metabolites. For all compounds the lower limit of quantification was 0.10 ng/mL. Imprecision was assessed according to the NCCLS EP5-T guideline and was below 10% for all compounds. Mean recoveries were between 94 and 109% for midazolam and its metabolites. The validated method was successfully applied in a pharmacokinetic study investigating in vivo CYP3A-activity in a large cohort of renal allograft recipients using sub-therapeutic doses of midazolam as a drug-probe.  相似文献   

3.
This study demonstrated the analysis of midazolam and its metabolites by liquid chromatography-mass spectrometry (LC-MS) with a sonic spray ionization (SSI) interface. The analytical column was a YMC-Pak Pro C18 (50 mm x 2.0 mm i.d.) using 10 mM ammonium acetate (pH 4.8)-methanol (1:1) at a flow rate of 0.2 ml min(-1). The drift voltage was 100 V. The sampling aperture was heated at 110 degrees C and the shield temperature was 230 degrees C. The lower limits for the detection of midazolam and 1'-hydroxymidazolam were 26.3 and 112.76 pg injected, respectively. The calibration curves for midazolam and 1'-hydroxymidazolam were linear in the range of 0.1-5 microg ml(-1). Within-day relative standard deviations was less than 7%. The method was applied to the determination of midazolam in monkey plasma, and the analysis of midazolam and its metabolites in an in vitro study with recombinant cytochrome P450 (CYP) 3A4. This method is sufficiently sensitive and useful to elucidate the kinetics of midazolam metabolite formation. We also investigated the effect of propofol on the metabolism of midazolam using recombinant CYP3A4. Propofol competitively inhibited the metabolism of midazolam to 1'-hydroxymidazolam by CYP3A4.  相似文献   

4.
Caffeine has been extensively used as a probe to measure CYP1A2 activity in humans with caffeine clearance or the paraxanthine (major metabolite of caffeine) to caffeine concentration ratio being regarded as the preferred metric. A simple reverse‐phased C18 HPLC assay using ethyl acetate liquid–liquid extraction was developed to quantitate caffeine and paraxanthine concentrations in saliva and plasma. The mobile phase consisted of acetonitrile–acetic acid–H2O (100:1:899) and analytes were quantitated with UV detection at 280 nm. The extraction recovery for paraxanthine and caffeine was approximately 70% in both saliva and plasma. The assay was linear over the concentration ranges 0.05–2.50 and 0.05–5.00 µg/mL, for paraxanthine and caffeine, respectively, in saliva. In plasma the assay was linear over the ranges 0.025–2.50 and 0.025–5.00 µg/mL for paraxanthine and caffeine, respectively. Intra‐ and inter‐assay precision and accuracy were less than 15%. Detection limits were 0.015 µg/mL for paraxanthine and caffeine in saliva, while it was 0.005 µg/mL for paraxanthine and caffeine in plasma. Utility was established in samples collected from two healthy volunteers who abstained from caffeine for 24 h and received a single 100 mg oral dose of caffeine. The assay developed is a robust, simple and precise technique to measure caffeine and paraxanthine in saliva and plasma of healthy volunteers after a single oral dose of caffeine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
CYP1A2 is important for metabolizing various clinically used drugs. Phenotyping of CYP1A2 may prove helpful for drug individualization therapy. Several HPLC methods have been developed for quantification of caffeine metabolites in plasma and urine. Aim of the present study was to develop a valid and simple HPLC method for evaluating CYP1A2 activity during exposure in xenobiotics by the use of human saliva. Caffeine and paraxanthine were isolated from saliva by liquid‐liquid extraction (chlorophorm/isopropanol 85/15v/v). Extracts were analyzed by reversed‐phase HPLC on a C18 column with mobile phase 0.1% acetic acid/methanol/acetonitrile (80/20/2 v/v) and detected at 273nm. Caffeine and paraxanthine elution times were <13min with no interferences from impurities or caffeine metabolites. Detector response was linear (0.10–8.00µg/ml, R2>0.99), recovery was >93% and bias <4.47%. Intra‐ and inter‐day precision was <5.14% (n=6). The limit of quantitation was 0.10µg/ml and the limit of detection was 0.018±0.002µg/mL for paraxanthine and 0.032±0.002µg/ml for caffeine. Paraxanthine/caffeine ratio of 34 healthy volunteers was significantly higher in smokers (p<0.001). Saliva paraxanthine/caffeine ratios and urine metabolite ratios were highly correlated (r=0.85, p<0.001). The method can be used for the monitoring of CYP1A2 activity in clinical practice and in studies relevant to exposure to environmental and pharmacological xenobiotics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The inhibition potential of drugs towards five major human hepatic cytochrome P450 (CYP) isozymes (CYP2A6, 3A4, 2C9, 2D6, and 2E1) was investigated via cassette dosing of the five probe substrates (coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) in human liver microsomes using a 96-well plate format. After microsomal incubations had been terminated with formic acid, the five marker metabolites (7-hydroxycoumarin, 1'-hydroxymidazolam, 4-hydroxytolbutamide, dextrorphan, and 6-hydroxychlorzoxazone) were simultaneously quantified using direct injection/online guard cartridge extraction/tandem mass spectrometry (DI-GCE/MS/MS). Several advantages resulted from the use of a short C(18) guard cartridge (4 mm in length) for DI-GCE/MS/MS, including minimal sample preparation, fast online extraction, short analysis time (2.5 min), and minimal source contamination. In addition, this method demonstrated an inter-day accuracy range from -8.7 - 7.4% with a precision less than 8.3% for the quantification of all the marker metabolites. The inhibition assay for the five CYP isozymes was evaluated using their known selective inhibitors via individual and cassette dosing of the probe substrates. The IC(50) values measured via cassette dosing were consistent with those observed via individual dosing, which were all in agreement with the reported values. In addition, the validated assay was used to evaluate the inhibitory potential of 23 generic drugs (randomly selected) towards the five CYP isozymes. The results suggest the integration of the cassette dosing strategy and the DI-GCE/MS/MS method can provide a reliable in vitro approach to screening the inhibitory potential of new chemical entities, with maximal throughput and cost-effectiveness, in support of drug discovery and development.  相似文献   

7.
A rapid liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of six cytochrome P450 (CYP) probe substrate metabolites including paracetamol (PAR) for CYP1A2, 4-hydroxytolbutamide (OHTOL) for CYP2C9, 5-hydroxyomeprazole (OHOMe) for CYP2C19, dextrorphan (DEXM) for CYP2D6, 6-hydroxychlorzoxazone (OHCHL) for CYP2E1 and dehydronifedipine (DNIF) for CYP3A4. The triple-quadrupole mass spectrometer was operated in both positive and negative modes, and selective reaction monitoring was used for quantification. The method was validated over the concentration ranges (0.075/0.04/0.05/0.02/0.1/0.0625 microM to 4.8/2.56/3.2/1.28/6.4/4.0 microM) for PAR/OHTOL/OHOME/DEXP/OHCHL/DNIF analytes with acceptable accuracy and precision. The inhibitory effect on the six CYP enzymes has been verified with their known specific inhibitors. This high-throughput inhibition screening approach has been successfully applied to study the inhibitory effects of 18 terpenoids on CYP enzymes. Among them, tanshinone IIA and cryptotanshinone are found to be potent inhibitors to CYP1A2, while artemisinin is a marginal inhibitor to CYP1A2 and glycyrrhetic acid is a weak inhibitor to CYP2C9.  相似文献   

8.
A technique has been developed for the assay of caffeine and its metabolites in biological liquids (the rat blood plasma). The analysis was carried out using high-performance liquid chromatography with an ultraviolet detector. The limits of quantification (LOQ) for caffeine, paraxanthine, theobromine, and theophylline were calculated to be 10 ng/mL, and the LOQ of 1,3,7-trimethyluric acid was 25 ng/mL.  相似文献   

9.
An early clinical development study (phase I) was conducted to determine the usefulness of dried blood spot (DBS) sampling as an alternative to venous sampling for phenotyping and genotyping of CYP450 enzymes in healthy volunteers. Midazolam (MDZ) was used as a substrate for phenotyping CYP3A4 activity; the concentrations of MDZ and its main metabolite 1'-hydroxymidazolam (1-OH MDZ) were compared between the DBS method from finger punctures, plasma and whole blood (WB), drawn by venipuncture, whereby several methodological parameters were studied (i.e. punch width, amount of dots analyzed and storage time stability). Genotyping between DBS and venous WB samples was compared for CYP2D6 (*3, *4, *6), CYP2C19 (*2, *3), CYP3A4 (*1B) and CYP3A5 (*3C). In addition, the subject's and phlebotomist's satisfaction with venous blood sampling compared with the DBS method was evaluated using a standardized questionnaire. An LC-MS/MS method for the quantification of the MDZ and 1-OH MDZ concentrations in DBS samples was developed and validated in the range of 0.100-100 ng/mL. No compromises were made for the limits of quantification of the DBS-LC-MS/MS method vs the authentic plasma and WB methods.  相似文献   

10.
A sensitive and simple liquid chromatography-tandem mass spectrometry method for the determination of midazolam and 1'-hydroxymidazolam in human plasma has been developed and validated with a dynamic range of 0.1-250 ng/mL. The analysis was based on semi-automated liquid-liquid extraction followed by evaporation of the extraction solvent, reconstitution and chromatography on a reversed-phase C(18) column. The mobile phase consists of 5 mm ammonium acetate and methanol and runs in gradient at a flow rate of 0.25 mL/min with column temperature of approximately 20 degrees C. The entire column effluent was transferred into the LC-MS/MS interface operated in positive electrospray ionization mode. The chromatographic run time was 4.3 min per injection, with retention times for midazolam, 1'-hydroxymidazolaml and the internal standard, triazolam, of 2.5, 2.3 and 2.1 min, respectively. The intra-day and inter-day precision (RSD %) and accuracy (bias %) of the quality control samples were <15.0% and within +/-13%, respectively. The current method has been applied to a clinical drug-drug interaction study in human.  相似文献   

11.
An improved high-performance liquid chromatographic method for the simultaneous determination of caffeine and its three primary metabolites (theophylline, theobromine and paraxanthine) in human plasma is described. The four substances were separated on a reversed-phase column (5 microns TSK gel ODS-80TM, 150 mm x 4.6 mm I.D.) by use of the mobile phase methanol-0.1 M NaH2PO4 (30:70, v/v) with a flow-rate of 0.8 ml/min. Absorbance was monitored at 274 nm. The detection limit was 5 ng/ml for theobromine and caffeine and 10 ng/ml for paraxanthine and theophylline. The linearity and reproducibility were sufficient for drug monitoring of caffeine and its primary methylxanthines.  相似文献   

12.
A sensitive and specific liquid chromatography tandem mass spectrometric (LC–MS/MS) method that enables the simultaneous quantification of probe substrates and metabolites of cytochrome P450 (CYP) enzymes was developed and validated. These substrates (metabolites)—coumarin (7-hydroxycoumarin), tolbutamide (4-hydroxytolbutamide), S-mephenytoin (4-hydroxymephenytoin), dextromethorphan (dextrorphan), and testosterone (6β-hydroxytestosterone)—were utilized as markers for the activities of the major human CYP enzymes CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. Analytes were separated on Kinetex C18 column (2.1 × 50 mm, 5 μm) using a binary gradient mobile phase of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Metabolites were detected and quantified by MS using multiple reaction monitoring at m/z 163 → 107.2 for 7-hydroxycoumarin, m/z 235 → 150.1 for 4-hydroxymephenytoin, m/z 287 → 171 for 4-hydroxytolbutamide, m/z 258 → 157.1 for dextrorphan, m/z 305 → 269 for 6β-hydroxytestosterone, and m/z 237 → 194 for the internal standard. The assay exhibited good linearity over a range of 10–500 ng/mL with acceptable accuracy and precision criteria. As a proof of concept, the developed cocktail assay was successfully used to examine the potential impact of catechin on the activity of the major rat liver CYP enzymes.  相似文献   

13.
The application of atmospheric pressure desorption/ionization on silicon (AP-DIOS) coupled with ion trap mass spectrometry (ITMS) was investigated for the quantification of midazolam in rat plasma, and determination of midazolam 1'-hydroxylation kinetics in pooled human liver microsomes. Results indicate good sensitivity with absolute detection limits for midazolam in rat plasma of approximately 300 femtograms. A linear dynamic range from approximately 10-5000 ng/mL was obtained in rat plasma with analysis times of 1 min per sample. Kinetic constants for midazolam 1'-hydroxylation in human liver microsomes yielded an apparent Km of 10.0 microM and Vmax of 6.4 nmol/min/mg. Studies investigating the inhibition of 1'-hydroxymidazolam formation by the cytochrome P450 3A4 model inhibitor ketoconazole yielded an IC50 of 0.03 microM. Quantitative precision for replicate analysis of rat plasma and human liver microsomal samples was variable with relative standard deviation (RSD) values ranging from a low of approximately 3% to over 50%, with the highest variability observed in data from human liver microsomal incubations. While preliminary studies investigating the application of AP-DIOS-ITMS suggested feasibility of this technique to typical pharmacokinetic applications, further work is required to understand the underlying causes for the high variability observed in these investigations.  相似文献   

14.
This paper describes a method for determining 11 pharmaceuticals in various water sources by SPE followed by LC-(ESI) MS. SPE was carried out with Oasis HLB and the recoveries were 33-67% for 250 and 100 mL sewage water, 55-77% for 500 mL river water and 72-98% for 1 L tap water, with the exception of sulfamethoxazole and omeprazole which showed lower recoveries in all kinds of sample. The LODs in river water were of 5 ng/L for sulfadiazine, trimethoprim, sulfamethazine, sulfamethoxazole, and ranitidine and 10 ng/L for the other compounds. The highest concentrations found in river waters were for sulfamethoxazole (50 ng/L). In influent sewage waters, ranitidine was the most commonly detected compound with a maximum value of 0.24 microg/L.  相似文献   

15.
A high-performance liquid chromatographic procedure is reported for reproducibly and sensitively quantitating caffeine and its N-demethylated metabolite paraxanthine in microsamples. A 5-micron reversed-phase radial compression column and 214-nm fixed wavelength ultraviolet detector were used to attain a sensitivity sufficient to quantitate these compounds at concentrations as low as 80 ng/ml using only 25 microliter of sample. The assay is applicable to microliter samples of whole blood, serum, plasma, saliva, amniotic, cerebrospinal and gastric fluids such as might be obtained in studies involving small animals or neonates. The utility of the assay is illustrated with caffeine and paraxanthine levels measured in several maternal and fetal fluids following constant-rate intravenous infusion of caffeine into a rabbit throughout pregnancy.  相似文献   

16.
A mass spectrometry based method for the simultaneous determination of an in vivo Greenford-Ware or 'GW cocktail' of CYP450 probe substrates and their metabolites in both human plasma and urine is described. The probe substrates, caffeine, diclofenac, mephenytoin, debrisoquine, chlorzoxazone and midazolam, together with their respective metabolites and stable isotope labelled internal standards, are simultaneously extracted from the biological matrix using solid phase extraction in 96-well microtitre plate format, automated by means of a custom built Zymark robotic system. The extracts are analysed by fast gradient high performance liquid chromatography (HPLC) with detection by tandem mass spectrometry (MS/MS) using thermally and pneumatically assisted electrospray ionisation in both positive and negative ion modes and selected reaction monitoring. The methods are specific, accurate and precise with intra- and inter-assay precision (%CV) of less than 15% for all analytes.  相似文献   

17.
A new method is described for the qualitative and quantitative analysis of midazolam, a short-acting 1,4-imidazole benzodiazepine, in human plasma. It involves a plasma deproteinization step, solid-phase microextraction (SPME) of midazolam using an 85-microm polyacrylate fiber, and its detection by gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring (SIM) mode, using pinazepam as internal standard. The assay is linear over a midazolam plasma range of 1.5-300 ng/mL, relative intra- and inter-assay standard deviations at 5 ng/mL are below 7%, and the limit of detection is 1 ng/mL. The method is simple, fast and sufficiently sensitive to be applied in clinical and forensic toxicology as well as for purposes of therapeutic drug monitoring.  相似文献   

18.
A selective and sensitive derivative photometric method has been developed for the determination of trace amounts of Zn2+ with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant. The molar-absorption coefficient and analytical sensitivity of the 1:2 complex at 554 nm are 1.19 x 10(5) L mol(-1) cm(-1) and 0.56 ng mL(-1), respectively. The detection limit is 1.96 x 10(-2) ng mL(-1) and Beer's law is valid in the 0.02-0.66 microg mL(-1) range of Zn2+. The developed derivative procedure, using the zero-crossing measurement approach, is applied for the rapid and selective simultaneous determination of Zn2+ and Cd2+ in the range of 0.06-0.66 and 0.20-1.60 microg mL(-1), respectively. Complex matrices, including reference materials, environmental and biological samples and synthetic mixtures, have been successfully analyzed for trace amounts of the two metal ions.  相似文献   

19.
A sensitive and rugged LC/MSMS method was developed for a comprehensive in vitro metabolic interaction screening assay with N-in-1 approach reported earlier. A cocktail consisting of ten cytochrome P450 (CYP)-selective probe substrates with known kinetic, metabolic and interaction properties in vivo was incubated in a pool of human liver microsomes, and metabolites of melatonin (CYP1A2), coumarin (CYP2A6), bupropion (CYP2B6), amodiaquine (CYP2C8) tolbutamide (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A4) and testosterone (CYP3A4) were simultaneously analysed with a single LC/MSMS run. Altogether, 13 metabolites and internal standard phenacetin were analysed in multiple reaction mode. Polarity switching mode was utilized to acquire negative ion mode electrospray data for hydroxychlorzoxazone and positive ionization data for the rest of the analytes. Fast gradient elution was applied, giving total injection cycle of 8 min. The method was modified for two different LC/MSMS systems, and was validated for linear range, detection limit, accuracy and precision for each metabolite. In addition, cocktail inhibition system was further tested using monoclonal anti-CYP antibodies as inhibitors for each probe reaction.  相似文献   

20.
Caffeine and its metabolites theophylline, theobromine and paraxanthine have been determined in rat brain and serum samples by high-performance liquid chromatography with ultraviolet detection. The recovery, 85-103%, allowed quantification by external standard methods. The variability was found to be less than 3 and 7% for intra-day and inter-day assays, respectively. The detection limit, 1.57 ng of methylxanthines on column, allowed the determination of 62.5 ng/g or ml in biological material. Rats treated with 30 mg/kg caffeine (subcutaneously) were sacrificed at different times (1, 6, 12 and 24 h). Higher concentrations of methylxanthines (specially paraxanthine) were observed in the striatum than in the rest of the brain, and it was also observed that the clearance of methylxanthines was faster in serum than in brain structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号